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Abstract Effective partitioning multimedia indexes is

key for efficient kNN search. But existing algorithms are

based on document similarity, without partition size or

redundancy constraints. Our goal is to create an index

partitioning algorithm that addresses the specific prop-

erties of a distributed system: load balancing across

nodes, redundancy on node failure and efficient node

usage under concurrent querying. We propose the rep-

resentation of data with overcomplete codebooks. Each

document is quantized into a small set of codewords

and indexed on per-codeword partitions. Quantization

algorithms are designed to fit data as best as possible,

leading to a bias towards codewords that fit the prin-

cipal directions of data in the original space. In this

paper, we propose the balanced KSVD (B-KSVD) algo-

rithm: it distributes data uniformly across codewords,
according to the distribution in the original space.

The comprehensive experiments focused on measur-

ing the effectiveness of partition size balancing and re-

trieval quality. Results show that B-KSVD better bal-

ances partition sizes (i.e., lower std. deviation on parti-

tion size distribution), compared to k-means and KSVD

baselines. B-KSVD achieves 38% 1-recall by inspecting

only 1% of the full index, distributed over 10 partitions.

k-means creates partitions with higher size variation

and requires either larger codebooks or the inspection

of larger portions of the index to achieve similar re-

trieval performance.
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1 Introduction

There are two main index partitioning strategies [10]:

(i) horizontal partitioning, or sharding, divides doc-

uments across nodes; and (ii) vertical or term-based

partitioning, divides document features across multiple

nodes.

Similarity-based partitioning simplifies the selection

of retrieval resources, as documents relevant to a query

are concentrated across a few shards [24]. In addition

to dealing with high-dimensional document descriptors
and its unknown structure, partitioning algorithms can

take advantage of the distributed system properties,

such as parallel processing, redundancy (i.e., index doc-

uments on more than one node) and ability to deploy

additional nodes on demand (e.g., cloud-based systems).

Existing multimedia document distribution algorithms

do not explore these properties; document allocation

policies are either random, e.g., [31], or based on exist-

ing partitions on single node algorithms, e.g., [7]. Fig-

ure 1 illustrates the document-to-partitions and query-

to-partitions assignment process for existing index par-

titioning techniques and the proposed technique. Col-

ored partitions show which partitions were selected for

inspection and the ”contribution to the candidate set”

bars are the expected contribution to the nearest neigh-

bor candidate set. Figure 1 (a) shows a single assign-

ment technique, where each document is assigned to a

single partition (e.g. [7]). Figure 1 (b) shows a random

assignment technique, where documents are assigned

to partitions by node load, and queries are assigned to
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Fig. 1 Examples of the querying process of multiple document partitioning policies: (a) single node indexing, (b) random
indexing, (c) redundant overcomplete indexing

all partitions. This technique is applied by some Map-

Reduce systems (e.g., [31]). Figure 1 (c) shows the de-

sired behavior of our proposed technique: select a small

subset of partitions, each with a different, complemen-

tary set of nearest neighbors. This is a special type of

partitioning: it distributes documents across partitions

(similar to horizontal partitioning), but each document

is placed on more than one partition, according to their

similarity (similar to term-based vertical partitioning

on text indexes).

Efficient nearest neighbor search requires effective,

similarity-based search space partitioning techniques.

But most similarity-based partitioning techniques in-

herently generate unevenly sized partitions. On single

nodes, this is not a big problem, as the computational

cost of accessing partitions is uniform. This unbalance

becomes a problem when partitions are distributed across

multiple nodes: how to balance between load balancing

and similarity-based indexing?

Distributed systems increase the probability of nodes

and network failures. Overcomplete partitioning enables

redundant indexing where each document is indexed on

multiple partitions, each with a different set of neigh-

bors. This contrasts with traditional distributed sys-

tems redundancy which is achieved by node duplica-

tion.

To sum up, the goal of this paper is to study the im-

pact of overcomplete data representations on the par-

tition size balancing and retrieval performance of dis-

tributed indexes. Codebooks for overcomplete data rep-

resentations are composed of a large number of code-

words, each one corresponding to a partition of the

search space. Indexing is achieved by encoding each

media descriptor as a linear combination of just a few

codewords.

The main contribution of this paper is the balanced

KSVD algorithm (B-KSVD) which balances the alloca-

tion of data across an adjustable number of codewords.

It was designed to address the following challenges:

– even distribution of data across codewords to achieve

better load-balancing when allocating data to nodes;

– documents should be assigned to partitions with

documents that are also close in the original space;

– redundant indexing: as document vectors are en-

coded with multiple codewords, each one correspond-

ing to a space partition, data can be stored redun-

dantly across multiple nodes.

The proposed approach offers several advantages. An

overcomplete balanced index means that concurrent queries

will be answered by different subsets of nodes, reducing

the bottleneck of having all nodes answering all queries.

(e.g. Figure 1 (b)). Furthermore, these properties mean

that distributed indexes can still operate with adequate

performance when a node fails. In other words, failure

to inspect a partition (e.g., as a consequence of a node

failure) will result in a slight performance decrease, in-

stead of no results returned.

This paper is organized as follows: Section 2 details

the related work in distributed search and space parti-

tioning. Section 3 formalizes overcomplete redundant

partitioning and details the proposed solutions. Sec-

tion 4 describes the experiments and sections 5 and 6

contain the discussion and conclusions, respectively.

2 Related work

One of the works that goes towards our partitioning

goals is by Ji et al [21]. They tested horizontal and ver-

tical index partitioning, based on a Vocabulary Tree

model quantization. Their work showed that vertical

partitioning offers the best temporal performance on

a distributed setting, without an increase in load im-

balance. The bulk of distributed multimodal retrieval

comes from combining Map Reduce [14] with single

node algorithms or from distributing the feature spaces

across nodes [30]. When applied to multimedia index-

ing [41, 29, 31], Map Reduce can be used to partition
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indexes horizontally. As Map Reduce requires Map and

Reduce nodes to be data agnostic, indexes must either:

a) query all nodes for all queries [31], which does not

meet our efficiency goal, or b) have all nodes accessing

the full index [29], which is limited by the time it takes

to fetch the relevant index subset. Moise et al [29] exper-

iments also show that the overhead behind the Map and

Reduce operations is considerable (e.g. copying data to

Hadoop Distributed File Systems), as it is only opti-

mized for massive batches of queries. Distributed tree-

based systems have also been studied for horizontal

index partitioning for multimedia indexing [7, 2], but

the effectiveness of sub-tree based index partitioning is

reduced when the dimensionality of the vectors to in-

dex increases [39], meaning that more nodes need to be

queried.

Effective partitioning of the search space is a key

part of approximate nearest neighbour algorithms. It

enables faster search by inspecting the subset of the

index where there is an higher density of nearest neigh-

bours. Recent algorithms in this area rely on Hamming

embeddings or on codebooks learned from data.

Hamming embeddings. Binary hash techniques

such as LSH (Locality Sensitive Hashing) [3], parti-

tion the search space in a data independent way, ac-

cording to a set of randomly generated hyperplanes.

Each binary hash bit represents an hyperplane in the

original feature space that divides it in two, assign-

ing a value of zero or one, according to the document

position. Binary hashes are generated by concatenat-

ing the output of multiple hyperplane functions. The

search space is partitioned horizontally, according to

the document hash: documents with similar hash codes

have a high-probability of being similar, so they are

stored on the same buckets. LSH spawn multiple tech-

niques [13, 12, 34] that explore different families of hy-

perplane partitioning functions (e.g. grid).

Other works have focused on creating better hash

functions, by exploring the structure of the data in the

original space. Leveraged by the distribution of doc-

uments in the original search space, data dependent

hash functions can create better partitions for similar-

ity search [17, 38, 40, 26]. Grauman and Fergus [16]

provide a comprehensive review of data dependent hash

techniques.

Regression and codebook design. Sparse hashes

are generated in a very high dimensional space. Doc-

uments with more non-zero coefficients on the same

hash positions have higher degrees of similarity than

documents with no common non-zero coefficients. Ef-

fective partitioning is achieved by having only a very

small subset of non-zero hash coefficients. Lewicki and

Sejnowski [25] show that the transformation of dense

feature representations into a sparse high-dimensional

representations achieves a high degree of compression,

while preserving locality structure on the non-null co-

efficients.

In the area of sparse coding, multiple techniques

were developed to generate high dimensional sparse hashes.

These techniques differ on the type of regulation ap-

plied to the hashes: l0 penalty (e.g. OMP (Orthogonal

Matching Pursuit) [33]), l1 penalty (e.g. Lasso [37]), l2
penalty with coefficient thresholding (e.g. Ridge [18])

or a combination of the l1 and l2 penalties (e.g. Elastic-

net [42]). OMP controls sparsity by greedily selecting

the most correlated coefficient at each iteration with the

current residual (l0 pseudo-norm penalty). Lasso does

sparse selection by applying the l1 penalty, Elasticnet’s

penalty is a mixture of l1 penalties with l2 penalties,

having both the sparsity properties of l1 penalty and

the limited coefficient magnitude of the l2 penalty.

Regression techniques use a codebook/dictionary as

the basis of the transformation into the new space.

Codebook computation algorithms such as KSVD [1],

estimate the codewords that minimize the reconstruc-

tion error. Stochastic gradient descent techniques (e.g. [32])

update each example per iteration, to minimize recon-

struction error. Cherian et al [11] presented an index

based on hashes created using l1 regression and the

Newton Descent for codebook learning. Borges et al [9]

presented an index based on sparse hashes created using

l0 regression and a codebook learned through KSVD.

However, none of these works address the index shard-

ing problem.

Quantization through clustering. Clustering

techniques are one of the most used space partition-

ing techniques, with applications on image indexing

and retrieval [28, 19]. The search space is partitioned

by generating a set of centroids; vectors are assigned

to the closest centroid according to a metric (e.g. eu-

clidean distance). k-means, a popular clustering tech-

nique, aims at finding the set of centroids that min-

imizes sum of squares within-cluster distances. Lloyd

[27] proposed a local search solution that is still widely

applied today. On the original formulations, the initial

seed centroids are selected randomly from the training

data, which may greatly increase the convergence time.

k-means++ [4] is a centroid selection technique that

estimates a good set of seed centroids, by analyzing

the distribution of the seed centroids and the training

data distribution. Fuzzy c-means clustering/soft clus-

tering [8] techniques extends the assignment of docu-

ments to multiple clusters, by keeping track of document-

to-cluster membership information. Clustering techniques

such as DBSCAN [15], do not set the number of cen-
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troids as a parameter, focusing instead on cluster den-

sity and points per cluster.

Clustering techniques are behind some of the best

performing nearest neighbour search algorithms. Jégou

et al [19] proposed IVFADC, an index that divides the

space into a set of Voronoi cells through k-means based

vector quantization. Further works improve candidate

distance computation [20] and descriptor quantization

[22]. Tavenard et al [35] proposed a technique for bal-

ancing k-means cluster size, by shifting cluster bound-

aries into parallel boundaries. Their experiments showed

less variability in the number of candidates retrieved

per query. Babenko and Lempitsky [5] created Inverted

Multi-Index (IMI), which generalizes IVFADC by using

product codebooks for individual cell construction. [6]

relaxed orthogonality constraints of IMI (Non-Orthogonal

IMI), to better fit data distribution. Their experiments

show that such partitioning still results on a large num-

ber of empty cells (60%-80% for IMI and 40%-50% for

NO-IMI). The large number of empty partitions of NO-

IMI shows how existing algorithms are still far from our

goal of well balanced index partitions, even after the re-

laxation of orthogonality constraints.

Consistent distribution. Consistent assignment

of requests (e.g. documents or queries) to nodes (i.e.

same request will always be assigned to the same node)

as been studied for load balancing on static content

servers or caches, [23, 36]. Consistent hashing [23] is

based on the creation of a distribution space, based on

numeric angle value: nodes and assigned random, uni-

formly distributed angle values; documents are assigned

consistent angle values (similar requests always have

the same values), designed to be uniformly distributed

across angle value space. Document to node assignment

is based on the distance between document and node

value. Rendezvous or Highest Random Weight hash-

ing [36] is based on generating node indexing priorities

based on hashing the concatenation of the document

and the node identifiers. As these techniques are de-

signed for static asset caching, they are optimized for

exact hash matches (e.g. SHA256, MD5 hash functions)

and do not give similarity guarantees on approximate

nearest neighbour search. Load-balancing is also depen-

dent on the quality of the distribution of the hashes

generated by the selected hash function.

3 Space Partitioning Codebooks

Current research on the distribution of multimedia in-

dexes is focused on similarity-based partitioning or pure

load balancing. Balancing partition sizes while preserv-

ing similarity may appear contradictory: if the data on

a given space is not uniformly distributed, how can we

guarantee a fair partitioning of space in both the densely

and sparsely populated regions?

We propose incorporating partition size balancing

and redundancy at codebook level. An index composed

of balanced, redundant partitions enables a flexible dis-

tributed retrieval process. The sequential inspection of

multiple partitions leads to incremental retrieval per-

formance increases. Conversely, not inspecting a par-

tition (e.g., node failure), should result in a small re-

trieval performance loss, instead of no results returned.

Another important factor is how does a distributed re-

trieval system deals with parallel query streams. On

use-cases with more query streams, having more uni-

formly sized partitions is beneficial: queries will be dis-

tributed across more partitions, and uniform partition

sizes guarantee that the expected partition inspection

time is more uniform. Thus, partitioning methods should

have the following properties:

– generate partitions that group documents that

are similar in the original space;

– generate evenly sized partitions.

– setting a fixed codeword over completeness, i.e.

sparsity factor;

– compute partition membership magnitude (e.g.

distance to centroid, reconstruction weight) to allow

candidate selection inside partitions;

Formally, consider the original vector y ∈ Rn, a

sparse vector x ∈ Rk and a sparsity coefficient s. We

represent a set of m, n-dimensional vectors in the origi-

nal space as Y ∈ Rm,n and the corresponding, k-dimensional

sparse vectors as X ∈ Rm,k Our goal is to find a func-

tion f such that:

f(y) = x,where ‖x‖0 = s and s� n� k. (1)

‖...‖0 is the l0 pseudo-norm: the sparse vector x must

have exactly s non-zero values/coefficients. Forcing spar-

sity to be equal to the sparsity factor s, instead of the

general constraint of smaller or equal, ensures that each

document will be placed exactly on s partitions. For a

set of vectors ya, yb, yc ∈ Rn and corresponding sparse

vectors f(ya) = xa, f(yb) = xb, f(yc) = xc ∈ Rk, our

goal is to generate sparse vectors with the following

property:

if ‖ya − yb‖2 < ‖ya − yc‖2 then

‖xa + xb‖0 < ‖xa + xc‖0
(2)

In the above expression, Equation 2, vectors that are

close in the original space have more non-zero coeffi-

cients on similar positions in the sparse vector space

than vectors that are farther apart. Sparse vectors are

the basis to generate a set of partitions P , p ∈ P ⊂ Y .
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Each sparse vector position corresponds to a partition,

and the value at that vector position quantifies the

”membership magnitude” to the partition. Our balanc-

ing goal is to minimize the differences in partition sizes.

After studying the properties of the space parti-

tioning in the literature, we arrive at two families of

methods that have the potential to meet the desired

properties: sparse coding and clustering. Sparse coding

techniques are designed to generate overcomplete rep-

resentations of the search space: our reasoning is that

codebook codewords can act as the basis of the parti-

tions. For clustering techniques, centroids and distance

to centroids act as codebook and codewords respec-

tively, using soft clustering for redundant partitioning.

The following sections detail how we applied these fam-

ilies of methods.

3.1 Codebooks by Sparse Coding

Sparse vectors can be high dimensional sparse hashes,

generated using a codebook representative of the orig-

inal space. Sparse hashes offer some advantages over

binary hashes for search space partitioning: sparse cod-

ing techniques are designed to be overcomplete, real-

valued membership (i.e., representative values on the

non-null dimensions of the sparse hash) and control

over the sparsity of the solution and thus, redundancy.

Another advantage is that these techniques work on

non-uniform or unbalanced feature spaces; codebooks

are learned using feature-specific training data, mean-

ing that they will always follow document distribution.

The effectiveness of distribution is not limited to feature

orthogonality: KSVD will index document on redun-

dant non-orthogonal partitions, maintaining similarity-

based indexing guarantees. The sparse hash generation

steps are:

– compute the dictionary/codebook D from training

data;

– use D to create an hash with s non-zero coefficients

and assign them to the corresponding partitions;

– for search, inspect the s partitions corresponding to

non-zero coefficients.

The process for the generation of sparse hashes that

follow Equation 1 goals, is to solve the following opti-

mization problem:

arg minx‖Dx− y‖2, subject to ‖x‖0 = s, (3)

where D ∈ Rn×k is a dictionary, learned from the data,

y ∈ Rn is the the original vector, x ∈ Rk is the sparse

hash and s is the sparsity coefficient. Note that we set

the sparsity constraint x to be equal to s, instead of

the usual smaller or equal requirement. This was to

ensure that generated hashes respect our redundancy

goals (fixed number of partitions per document). Equa-

tion 3 generates a hash with the desired properties, us-

ing a previously computed dictionary. Techniques for

dictionary computation include K-SVD [1] and Stochas-

tic Gradient Descent techniques.

We chose to combine OMP [33] with a K-SVD based

codebook for two reasons. In our previous work [9], we

found that OMP offers a good trade-off between recon-

struction error and hash computation time when com-

pared to other l0 or l1 based regularization techniques.

The second reason is its greedy nature: on each itera-

tion, OMP chooses the codeword that better minimizes

the reconstruction error of the hash computed in the

previous iteration. It does not change the coefficients

from the previous iteration. OMP’s greediness is tied

with the retrieval process, where candidate selection

starts at the partition with the highest reconstruction

coefficient. OMP guarantees that choosing more code-

words for reconstruction does not alter the previously

computed coefficients, which is a desirable property for

a system that can dynamically change how many par-

titions to inspect.

3.1.1 KSVD and OMP

Equation 3 shows how to generate a sparse hash x

for a vector y, based on an (existing) dictionary D.

Thus, one must first generate the dictionary D that

adequately represents documents in the original space.

Computing the dictionary requires solving the follow-

ing optimization problem: find the dictionary D and set

of sparse hashes X that minimizes the reconstruction

error against a set of vectors Y :

arg minD,X‖DX − Y ‖2,

subject to ‖x‖0 = s, for x ∈ X
(4)

where Y ∈ Rm×n are the original document vectors,

D ∈ Rn×k is a dictionary, to be learned from the data,

X ∈ Rk×m are the sparse hashes (one per column), x is

a sparse hash vector (column of X) and s is the sparsity

coefficient.

Solving for both D and X is NP-hard. KSVD alter-

natively optimizes the solution for D and X. KSVD up-

dates each dictionary codeword iteratively (represented

by i), while fixing other codewords j[0,k] 6= i. By decom-

posing Equation 4 into KSVD iterative process, we ar-

rive at the following formulation, for the iteration where
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the codeword i is fixed:

arg minDi,(xi)I‖Di(xi)I + (Ei)I − Y ‖2F

Ei =
∑

j[0,k] 6=i

‖Djxj − Y ‖2F
(5)

where ‖...‖F is the Frobenius norm, and Ei is the re-

construction error for the (fixed) codewords, j[0,k] 6= i.

Sparsity is enforced by using only the dimensions with

non-zero coefficients: I is the set of all index with non-

zero coefficients that use atom i for reconstruction.

By fixing j codewords, the value for codeword Di

can be computed by finding a rank-1 matrix approxi-

mation of Ei, Êi, and factorizing the result into Di and

xi.

Êi = G

1∑
V T (6)

This decomposition will yield Di as the first column of

G and xi as the first column of V ×
∑1

.

3.1.2 Balanced KSVD

KSVD enforces the creation of sparse representations

that group similar vectors in the original space on code-

words with non-zero coefficients. When generating mul-

tiple sparse hashes, KSVD will inherently create unbal-

anced representations, as the dictionary codewords are

biased towards the principal directions of the data on

the original space. Babenko and Lempitsky [6] already

showed how relaxing orthogonality constraints reduces

the number of non-empty partitions. Our goal is to take

it further, and minimize the standard deviation σ in the

distribution of documents across partitions:

arg minD,X‖DX − Y ‖2 + σ(‖XT ‖0),

subject to ‖x‖0 = s, for x ∈ X
(7)

The transposed matrixXT combined with the l0 pseudo-

norm as ‖XT ‖0, represents a vector with k elements,

containing the number of documents per codeword. It

contrasts with the sparsity constraint ‖x‖0 ≤ s, for x ∈
X, which represents the number of codewords per doc-

ument. Thus, σ(‖XT ‖0) is the standard deviation in

the number of documents per partition.

To achieve this goal, B-KSVD reduces the magni-

tude of dictionary codewords that have more documents

assigned to. Its alternate optimization process is simi-

lar to Equation 5; balancing is applied to Equation 6’s

E decomposition; after the rank-1 approximation, we

multiply the G matrix by the penalty factor B:

balanced Êi = B ×G
1∑
V T

B =
1(

‖XT
−1‖0 + r

)e (8)

where X−1 represent the hashes computed using the

previous iteration of the dictionary. Therefore, ‖XT
−1‖0

is a k-dimensional vector, containing the number of

documents assigned to partitions on the previous it-

eration. This formulation matches the number of doc-

uments per codeword formulation of ‖XT ‖0, stated on

Equation 7. e is the parameter to control the magni-

tude of the penalty and r is a regularization factor to

avoid division by zero for partitions with zero docu-

ments. This penalty distorts the estimation of the dic-

tionary codewords, creating non-orthogonal balanced

representations. The regularization parameters r and

s control the magnitude of this distortion, balancing

between similarity-based indexing and balanced parti-

tions.

3.1.3 Random dictionary

We can also measure the impact of dictionary learning

on the computation of sparse hashes, by using a ran-

dom dictionary. OMP will compute sparse hashes using

random codewords, generated from the Gaussian distri-

bution with zero mean and unit standard deviation.

D ∈ Rn×k ⊂ N (0, 1) (9)

Random dictionaries show how OMP clusters data with-

out prior search space information from dictionary com-

putation.

3.2 Codebooks by Soft Quantization

An alternative interpretation of the sparse vector com-

putation process follows soft clustering, where the clus-

ter membership is controlled by a fixed s sparsity fac-

tor. Its focus is to measure how well these clusters can

represent neighboring data in a balanced way, and how

using multiple clusters affects the sparse vector compu-

tation process in a high dimensional feature space. The

clustering process is the following:

– find the centroids

– project the documents to the closest s clusters

– search in the matching cluster posting lists
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Consider a set of cluster centroids C ∈ Rn×k. Our

clustering process finds the set of closest centroids c ∈
Rn×s ⊂ C, and assigns the Euclidean distances to those

centroids as the sparse vector values:

arg minc(‖ci − y‖2), for ci∈[0,k] ∈ C, with |c| = s

xi∈[0,k] =

 ‖ci − y‖2 , for ci ∈ c

0, otherwise

(10)

To find the set of centroids that best represent the fea-

ture space, we have selected three techniques, random

sampling, k-means and fuzzy c-means. Alternative clus-

tering techniques such as DBSCAN do not allow setting

the number of clusters and thus, do not meet our de-

sired properties.

Fuzzy c-means clustering [8] techniques extend the

assignment of documents to clusters and keep mem-

bership information to multiple clusters (e.g., ratio of

the distance to the centroids). As with k-means, these

techniques minimize the sum of document to centroid

distances, taking into account membership and cluster

fuzziness information (degree of overlap between clus-

ters). In our preliminary experiments, fuzzy c-means

produced very unbalanced clusters: all documents were

assigned to only 20 clusters, regardless of the total gen-

erated centroids (512, 1024, 2048, 4096, 8192). Due to

this extreme unbalance, we did not pursue further ex-

periments using fuzzy c-means.

3.2.1 k-means centroids

k-means is one the most widely applied clustering func-

tions in nearest neighbor search. It estimates a set of

centroids C ∈ Rn×k that minimizes the distances be-

tween the points to the centroids of their clusters. The

k-means clustering process minimizes the following ex-

pression:

arg minC

∑
ci∈C

∑
yj∈Pi

‖ci − yj‖2 (11)

where C ∈ Rn×k is the set of cluster centroids, Pi, i ∈
[0, k] is the set of documents yj ∈ P that are assigned

to centroid Ci. The k-means initialization requires the

selection of a set of points as the initial centroids. We

selected k-means++ [4] centroid initialization, as it se-

lects points that give a good representation of the search

space and lead to faster convergence, on a large set of

experiments and datasets.

3.2.2 Random centroids

We tested a random sampling technique that selects a

random set of points C from the training data Y :

C ∈ Rn×k ⊂ Y (12)

The sampling process makes no assumptions regarding

distribution. We expect that the algorithm will select

more points in denser regions of the training data space.

As with the random dictionary with OMP regression,

this technique is a baseline to measure the impact of

centroid selection for the creation of evenly balanced

partitions.

4 Experiments

We’ve described how to create over-complete codebooks

that generate sparse, high dimensional hashes. To mea-

sure how well the proposed methods meet the stated

partitioning and retrieval goals, we evaluated them from

three perspectives:

– Balanced partitioning: measure how the tested

methods manage to balance the size of the parti-

tions;

– Inter-partition retrieval: measure the cumulative

impact of searching on more than one partition;

– Intra-partition retrieval: measure how well the

partitions capture the original space nearest neigh-

bours;

Dataset: We tested the index partitioning meth-

ods on the Billion Vectors dataset [19, 20]. It contains 1

million descriptors from two feature types: GIST (960

dimensions) and SIFT features (128 dimensions). The

datasets were split into a training, validation and test

subsets1. We extracted 1000 queries per feature type

from the test set. Having two types of features allow us

to measure the partitioning impact of feature type on

the partitioning process.

Metrics: In addition to load balancing quality

metrics, which are the number of documents per parti-

tion p and standard deviation σ of partition size versus

the mean, we evaluated the following retrieval quality

metrics, averaged over 1000 queries:

– 1-recall@r: average rate of queries for which the 1-

nearest neighbor was returned. r changes with the

number of candidates inspected.

– %kNN: average percentage of true k nearest neigh-

bors retrieved.

1 http://corpus-texmex.irisa.fr/
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Fig. 2 Sorted partition size distribution for multiple feature types and number of partitions. The smaller, inner chart shows
the top 20 partition sizes, and the larger chart shows the remaining partition sizes.

Parameters: Based on preliminary experiments,

we found that setting the exponent of the penalty to c =

2 and regularization factor to r = 0.001 offered the best

trade-off between similarity and even balancing. We set

the sparsity coefficient to s = 10 for all algorithms and

varied the codebook size k and thus, the number of

partitions (512, 1024, 2048, 4096, 8192).

4.1 Balanced partitioning

The goal of this experiment is to measure how the

selected techniques distribute documents across parti-

tions, for multiple numbers of partitions and feature

types. Documents were assigned to the partitions with

corresponding non-zero codewords/centroids, for each
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Fig. 3 Inter-node partition: %50-NN of individual partitions, for multiple feature types and number of partitions

partition method, feature type and the number of par-

titions.

Figure 2 shows the behaviour of the partitioning

algorithms for the GIST and SIFT features (left and

right side charts respectively) and the number of par-

titions (different rows). For readability, each chart is

divided into two parts: the smaller chart shows the oc-

cupation of the top 20 partitions, where the variation in

scale of the number of documents is higher. The larger

chart shows the variation for the remaining partitions

(20 to k). The X-axis represents the partitions, sorted

in descending order of the number of indexed docu-

ments (i.e., partitions with more documents are to the

left). The Y-axis represents the number of documents

on that partition. Note that, as the goal is to show the

relative differences between partitioning methods, the

Y-axis scale is different across charts. It is also impor-

tant to note that the sum of the sizes of the partitions is

the same for all partitioning methods (index size m×s).

Table 1 shows the detailed standard deviation (σ),
larger partition (Max), and median (Med) partition size

(k/2). KSVD learns a dictionary with the principal di-

rections of the data in the original space. Combined

with OMP greedy codeword selection, KSVD sparse

representations are highly biased towards principal di-

rections, which is clear on the top 20 charts. B-KSVD

managed to counteract KSVD’s greediness and gener-

ated the most balanced solutions (σ columns on Ta-

ble 1). This effect is clearer at the partitions with the

larger and smaller partitions: on the top 20 positions, B-

KSVD is less affected than KSVD, by the most popular

directions of the data; the occupation of the partition

at median value is also consistently closer to the ex-

pected value (Mean) than other methods, meaning the

decrease in the number of documents is much slower

and gradual than the other retrieval methods tested.

B-KSVD is also the most stable solution, offering the

best balancing properties for all partition sizes and fea-

ture types.
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Table 1 Partition balancing results: Max is the size of the largest partition (bold values: lowest is best), Med is the size of
the median partitions, partition size / 2 (bold values: closest to mean is best), and σ is the standard deviation of the partition
sizes (bold values: lowest is best). The Mean value is the same for all methods for a set partition size, as all methods produce
solutions with similar sparsity s. Mean, Max, Med and σ values are on base 103.

Partitions: 512 1024 2048 4096 8192
Mean: 19.5 9.8 4.9 2.4 1.2

GIST

Algorithm Max Med σ Max Med σ Max Med σ Max Med σ Max Med σ

Random OMP 60.4 17.6 9.7 46.2 8.2 6.0 45.6 3.8 3.9 31.4 1.8 2.2 21.2 0.8 1.3
KSVD OMP 245.9 16.7 16.4 115.1 8.4 7.6 148.0 4.3 4.8 85.1 2.1 2.6 176.2 0.9 2.4
B-KSVD OMP 33.0 20.1 4.2 21.5 9.9 2.4 11.5 4.9 1.3 8.1 2.4 0.9 4.5 1.1 0.7
Sample clust. 160.9 8.9 27.0 94.3 4.3 13.7 91.4 2.1 7.6 50.2 1.0 3.9 28.8 0.5 2.1
k-means clust. 104.4 16.2 14.9 66.2 8.0 8.9 43.8 3.5 5.3 37.6 1.0 3.4 29.6 0.0 2.3

SIFT

Algorithm Max Med σ Max Med σ Max Med σ Max Med σ Max Med σ

Random OMP 101.4 13.7 15.9 106.0 6.7 10.3 97.6 3.1 6.0 71.5 1.4 3.6 67.6 0.7 2.1
KSVD OMP 105.4 14.9 16.0 91.9 6.5 9.9 64.5 3.5 4.8 31.6 1.8 2.4 78.2 1.0 1.5
B-KSVD OMP 46.4 18.5 4.8 31.8 9.1 3.0 16.5 4.6 1.4 11.8 2.3 0.8 8.3 1.1 0.5
Sample clust. 116.6 13.0 18.2 68.8 6.5 9.7 36.6 3.3 4.8 18.7 1.7 2.4 11.6 0.8 1.2
k-means clust. 55.3 18.4 8.4 30.0 9.0 4.4 18.1 4.4 2.4 11.6 2.2 1.5 8.6 1.0 1.0

Table 2 Intra-node, cumulative retrieval results for 1% and 10% global search limits (1× 103 and 10× 103 candidates per
partition, respectively)

Partitions: 512 1024 2048 4096 8192

GIST: 1% limit

Algorithm %50NN 1-recall %50NN 1-recall %50NN 1-recall %50NN 1-recall %50NN 1-recall

Random OMP 0.13 0.20 0.14 0.22 0.16 0.26 0.16 0.27 0.16 0.28
KSVD OMP 0.10 0.15 0.11 0.19 0.12 0.21 0.13 0.20 0.13 0.21
B-KSVD OMP 0.13 0.23 0.16 0.26 0.18 0.27 0.20 0.29 0.19 0.30
Sample clust. 0.02 0.03 0.03 0.05 0.05 0.09 0.09 0.15 0.16 0.25
k-means clust. 0.02 0.03 0.03 0.05 0.04 0.06 0.06 0.10 0.09 0.13

SIFT: 1% limit

Algorithm %50NN 1-recall %50NN 1-recall %50NN 1-recall %50NN 1-recall %50NN 1-recall

Random OMP 0.14 0.20 0.16 0.23 0.19 0.27 0.21 0.36 0.21 0.30
KSVD OMP 0.16 0.24 0.19 0.33 0.21 0.33 0.23 0.37 0.23 0.37
B-KSVD OMP 0.17 0.24 0.19 0.27 0.22 0.34 0.23 0.38 0.25 0.40
Sample clust. 0.03 0.05 0.07 0.11 0.13 0.19 0.25 0.37 0.44 0.59
k-means clust. 0.03 0.05 0.06 0.10 0.11 0.16 0.25 0.35 0.46 0.59

GIST: 10% limit

Algorithm %50NN 1-recall %50NN 1-recall %50NN 1-recall %50NN 1-recall %50NN 1-recall

Random OMP 0.53 0.62 0.49 0.60 0.42 0.56 0.34 0.44 0.28 0.41
KSVD OMP 0.41 0.50 0.38 0.51 0.33 0.47 0.29 0.39 0.26 0.35
B-KSVD OMP 0.57 0.69 0.47 0.60 0.36 0.50 0.28 0.39 0.22 0.33
Sample clust. 0.21 0.28 0.37 0.46 0.54 0.65 0.68 0.78 0.72 0.82
k-means clust. 0.21 0.27 0.44 0.53 0.66 0.74 0.76 0.85 0.80 0.89

SIFT: 10% limit

Algorithm %50NN 1-recall %50NN 1-recall %50NN 1-recall %50NN 1-recall %50NN 1-recall

Random OMP 0.63 0.75 0.61 0.72 0.56 0.67 0.50 0.66 0.43 0.54
KSVD OMP 0.65 0.77 0.62 0.75 0.56 0.69 0.50 0.62 0.41 0.52
B-KSVD OMP 0.67 0.78 0.63 0.74 0.60 0.69 0.51 0.64 0.44 0.58
Sample clust. 0.43 0.51 0.69 0.79 0.89 0.95 0.95 0.98 0.92 0.98
k-means clust. 0.46 0.56 0.84 0.90 0.96 0.99 0.95 0.99 0.93 0.99
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Fig. 4 Cumulative inter-node partition: global %50-NN, for multiple feature types and number of partitions
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Fig. 5 Cumulative inter-node partition: global %50-NN, for GIST features and multiple limits
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Fig. 6 Cumulative inter-node partition: global %50-NN, for SIFT features and multiple limits

k-means performance is greatly affected by feature

type. For SIFT features, k-means partition size balanc-

ing is in line with B-KSVD for the top 20 positions,

with a faster decay in the number of documents on the

smaller partitions. For GIST features, the unbalanced

distribution is more clear and appears earlier (top 20).

We also compared the impact in balancing parti-

tion sizes of the data-dependent approaches (k-means,

KSVD and B-KSVD) versus random and sampling tech-

niques. OMP with the random dictionary balancing

varied greatly for the type of features used: for GIST,

it is in line with k-means; for SIFT it has the most un-

balanced distribution of all tested methods (e.g. some

partitions have over 1/8 of the total number of indexed

documents). Sample clustering also shows large unbal-

ances, where larger partitions clustered most of the doc-

uments. The large balancing variations for these meth-

ods shows that adjusting codebooks to the data has a

large impact on balancing partitions.

The impact of the number of partitions is also clearly

visible. The tested partitioning methods are not de-

signed to handle a higher number of partitions and gen-

erates a large number of very small or empty partitions

(visible on the right side of X-axis of Figure 2 charts).

The exception is B-KSVD, that managed to keep evenly

sized partitions, regardless of the number of partitions.

These experiments showed how different partition-

ing methods distribute documents across partitions. B-

KSVD countered the greedy nature of regular KSVD

and offered the most uniform partitions. On the fol-

lowing sections, we’ll show how it affects the retrieval

performance.

4.2 Searching redundant partitions

Balancing partition sizes is only desirable if it does

not degrade retrieval performance. In this section, we’ll

measure the retrieval impact of searching on over-complete

partitions. An advantage of real-valued over binary hashes

is that sparse hash values represent the document-partition

membership likelihood. By having a measure of mem-

bership of the documents and queries to partitions, one

can prioritize candidate selection at partition or global

level.

Intra-partition search: On this experiment, we
measure the retrieval performance of individual parti-

tions, Figure 3. For each query, we selected 1000 can-

didates (i.e., 0.1% of total index size) for each corre-

sponding partition, for a combined limit of 1%. The or-

der of partition inspection is defined by the coefficients

(OMP-based approaches) or the inverse of the distance

to the centroid (centroid-based approaches).

B-KSVD offers the best results on the first partition

(i.e., higher membership) for GIST partitions (14% of

50 nearest neighbors, examining, 1000 documents, i.e.,

0.1% of the index). The number of nearest neighbors

decreases for lower membership partitions. The impact

of the remaining partitioning methods is in the order of

2% of the 50 nearest neighbors, for a 0.1% search limit.

For SIFT, the partition results show a different pat-

tern. KSVD and B-KSVD also retrieve the most results

on the top membership positions, for all but the exper-

iments with 8192 partitions. For larger numbers of par-

titions, clustering-based solutions offer better results.
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Inter-partition (global) search: Table 2 shows

the aggregated results for the search process. From each

partition, we selected 0.1% and 1% of total index size.

With the (fixed) sparsity factor s set to 10, the com-

bined limit is 1% and 10% of total index size, respec-

tively.

The advantages of KSVD based methods are clear

on the limited search conditions (inspecting 1% of the

index). When using smaller search inspection limits,

the reconstruction coefficient represents similarity in

the original space better than the distance to cluster

centroids. For larger search inspection limits (10%) and

more partitions, clustering methods can retrieve a larger

set of candidates. The same findings are also valid for

1-recall results. The main difference is that they are

slightly higher that %50NN results. This means that

both sparse coding and clustering methods can index

the first nearest neighbor at higher rates than the re-

maining 49 nearest neighbors.

Incremental inter-partition search: Figures 4, 5

and 6 detail Table 2 results, by showing the incremen-

tal %50NN gains of inspecting all 10 partitions. Fig-

ure 4 shows the results for a 1% search limit; Figures

5 and 6 show what happens when increasing the search

limit to 5% and 10% of index size. As with Figure 3 re-

sults, partitions are inspected by coefficient or inverse

distance-to-centroid order.

These results show some interesting differences in

retrieval effectiveness. For GIST features, B-KSVD achieves

good %50NN when inspecting one partition with 1%-

5% search limits. We can also see that there is only an

average difference in %50NN between 5 and 10% when

inspecting one versus all (10) partitions, regardless of

partition size. For SIFT features, the behavior is sim-

ilar, with higher %50NN gains when inspecting more

partitions. KSVD behaves similarly, but with lower ini-

tial %50NN on most parameter configuration. Random

OMP follows a trend more similar to clustering based

approaches: the initial %50NN is lower, and the gains

from inspecting more partitions are higher.

On k-means and other clustering-based techniques,

having more partitions increases retrieval performance.

This property is more evident when dealing with more

partitions and using higher search limits.

As both codebook and clustering methods are based

on greedy atom selection, adding the document to more

partitions does not affect the results for previous par-

titions. Thus, we can see the expected retrieval perfor-

mance of setting the value of the redundancy factor to

between one and ten by looking at precision levels at

those levels in Figures 4, 5 and 6.

5 Discussion

On the previous section, we showed how search space

partitioning algorithms affect the balanced distribution

of documents across partitions, and the corresponding

impact on retrieval performance. This fulfills the initial

goal of this paper: create balanced search space parti-

tions for distributed indexing and retrieval. We argue

that these experiments show that B-KSVD can work

for the partitioning of a distributed search index better

than the baseline methods.

A clear pattern across experiments is that sparse

coding-based techniques have better precision with lower

search limits and a smaller number of partitions, while

centroid based approaches have better results when search-

ing with higher limits and more centroids. This is due

to centroid-based techniques being based on selecting

points in the original space. Selecting more centroids in-

creases the probability of getting better coverage of the

search space. This property also results in having the

nearest neighbors more spread out over more partitions,

resulting in higher gains when inspecting more parti-

tions. This is visible when dealing with SIFT features

and a large number of partitions (e.g., 8192). We can

also observe that centroid selection as a non-negligible

impact on retrieval performance.

This contrasts with dictionary-based approaches, which

transform the original feature space into a new space,

based on the principal directions of the original space.

Gains in performance decrease as one inspects the hash

dimensions with a smaller reconstruction coefficients.

B-KSVD achieves good distribution and works well

for low search limits (1% of total index size), and a

small number of partitions (512 to 1024). This is an

interesting property to answer concurrent queries on

distributed indexes: having a more balanced distribu-

tion means that the probability of querying the same

node for multiple queries decreases.

k-means works better for higher limits and num-

ber of partitions, due to being based on working in the

original search sparse. It offers more predictable, linear

performance increase, at the cost of by having larger

partitions.

6 Conclusion

On this paper, we propose B-KSVD, a codebook learn-

ing technique for the creation of balanced, over-complete

search partitions. We formalized the requirements to

create overcomplete representations with redundant doc-

ument indexing, where partitions contain overlapping

subsets of data. We proposed representations based on

sparse coding and clustering models, and an adaption
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to the KSVD algorithm, balanced KSVD (B-KSVD),

that distributes hash values across positions, according

to the global distribution.

Experiments showed that computing codebooks that

penalize larger partitions creates more balanced parti-

tions, and has a positive retrieval impact.
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