
 1 

  
Abstract— This letter proposes a method for controlling single- 

polarized phase-only reconfigurable reflectarray antennas by 
rows and columns instead of element by element, which enables 
an important simplification of the control circuitry. First, the 
fundaments of the method are presented and then the 
implications on analog and digital implementations are discussed. 
Finally, applications beyond beam steering are also addressed. It 
is shown that this is a promising method for pure beam steering 
applications in combination with analog control or with phase 
quantization with at least two bits. Remarkably, this last result 
contradicts the existing literature. 
 

Index Terms—Beam steering, phase quantization, reflectarray, 
row-column  

I. INTRODUCTION 
ECONFIGURABLE reflectarray antennas (RA)  
constitute a good low complexity alternative to traditional 

phased arrays, thanks to their spatial feeding mechanism. 
However, the complexity of the beam scanning control 
circuitry becomes challenging for large RAs [1]. Several 
methods were proposed to simplify it such as sequential 
loading [1] or element gathering [2]. A high reduction of 
control lines and circuitry is possible by the separate 
illumination proposed in [3]. It is based on addressing the 
elements by rows and columns, which leads to a potential 
reduction of biasing lines from NxM to N+M, being N and M 
the number of RA rows and columns. However, the method is 
not accurately assessed in [3], especially the role of the 
spherical illumination and the effects of 1-bit quantization. 

Preliminary work from the author proposed a RA cell 
enabling analog row-column beam scanning control [4]. In 
this letter, a thorough analysis of the benefits, drawbacks and 
limitations of analog and digital implementations of the row-
column scheme is conducted for the first time. The study is 
focused on single-polarized phase-only RA solutions and 
addresses pure beam scanning applications as well as multi-
beam or shaped beam solutions. Remarkably, it demonstrates 
that the proposed method is only suitable for pure beam 
steering applications with analog control. Digital control with 
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quantization of at least two bits may be also feasible but at the 
expense of a lower bias line reduction with respect to analog 
schemes. The letter also proposes a quantitative indicator of 
the feasibility of the row-column control in each targeted 
application based on the singular value decomposition. 

II. ROW-COLUMN REFLECTARRAY CONTROL SCHEME 
Focusing on a single linear polarization, the requirement for 

controlling a rectangular RA with N rows and M columns by a 
row-column scheme, is that the targeted matrix of co-polar 
scattering coefficients over the RA, must be expressed as the 
multiplication of a row and a column vector; hence 

 𝑺𝑺𝑹𝑹𝑹𝑹 = 𝒓𝒓𝒓𝒓; (1)  

where SRA is the N x M desired matrix whose components sRA,ij 
are the co-polar reflection coefficients of the element at row i 
and column j in the polarization of interest (i.e. sxx or syy); and 
r and c are a N x 1  and 1 x M vectors, respectively. In the case 
of phase-only RAs, as addressed in the remainder of the paper, 
the multiplication in (1) translates to a phase addition. In this 
way, as depicted in Fig. 1, all elements in the same row 
(column) share the same control and the phases set by the row 
and column controls are added at cell level. This scheme 
enables a potential reduction of biasing lines and control 
circuitry (e.g. digital-to-analog converters) from NxM to N+M.  

 
Fig. 1. Row-column reflectarray control scheme 

However, basic algebra shows that the decomposition in (1) is 
only possible if 

 rank(𝑺𝑺𝑹𝑹𝑹𝑹)=1, (2)  

which is defined here as the separability condition, and which 
limits the application of the row-column control. In practice, 
this separability condition means that the phase shift to be 
synthesized by a unit cell must be expressed as the sum of two 
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terms, one depending only on the row index of the unit cell 
and the other on the column index. 

The discussion above considered a single linear 
polarization. Dual linear or circular polarization schemes are 
out of the scope of this paper. However, it must be noted that 
in such cases, condition (1) still applies independently to each 
linear polarization.  

III. ANALOG BEAM STEERING CONTROL 
The RA phase distribution required in order to form a pencil 

beam towards (θo,φo) is  

 
𝜙𝜙𝑅𝑅𝑅𝑅,𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑑𝑑𝑖𝑖𝑖𝑖 − 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑜𝑜

− 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑜𝑜 (3)  

where dij is the distance from the feed to each RA unit cell, 
and (xij,yij) is the relative position of each unit cell. It is easy to 
check that the corresponding  𝑺𝑺𝑹𝑹𝑹𝑹 = 𝑒𝑒𝑗𝑗𝝓𝝓𝑹𝑹𝑹𝑹 does not fulfil the 
separability condition (2). Indeed, the two last terms of (3) are 
variable phases that only depend on the target direction and on 
the x and y coordinates of the unit cell, respectively; thus 
supporting separability. However, the first term is a fixed 
phase related to the spherical illumination, which cannot be 
split in two independent terms depending only on the row and 
column indexes. Remarkably, this term was neglected in the 
formulation of [3].  The row-column control can be still used 
by building three phase shifting structures independently 
implementing the three separated terms of (3) and being added 
at cell level. Since the first term is fixed for each unit cell in 
the RA, it does not need any control line, thus the scheme in 
Fig. 1 can be still applied. A unit cell following this scheme 
was proposed in [4]. Its evaluation revealed two new sources 
of phase errors: (i) due to the imperfect independency of the 
three phasing structures; and (ii) due to the unavailability of 
compensating the different incidence angles element by 
element since the controls are shared by a whole row 
(column).  However, simulated radiation patterns showed that 
the main impact of these errors is a slight increase of the 
sidelobe levels, which may be acceptable for a large number 
of applications, thus confirming the feasibility of the method. 

A. Rank one approximation 
The main challenge of the previous method is the 

implementation of three independent phasing structures in the 
area of a unit cell [4]. Therefore, this section analyzes the 
approximation of the phase distribution in (3) by a rank one 
matrix. This solution permits a direct application of the 
scheme in Fig. 1, thus requiring only two variable phasing 
structures [the first term in (3) is not compensated].  

The best rank one approximation in the sense of MMSE 
(Minimum mean squared error) is given by the singular value 
decomposition (SVD). That is, performing the SVD, the 
targeted SRA can be expressed as 

 SRA=USVT. (4)  

In turn, the rank one approximation writes  

 𝑺𝑺𝑹𝑹𝑹𝑹′ = 𝑠𝑠11𝒖𝒖𝟏𝟏𝒗𝒗𝟏𝟏𝑻𝑻, (5)  

where  s11 is the highest singular value and u1 and v1 are the 
singular vectors associated to it, thus the first columns of 
matrices U and V, respectively. Therefore, the desired r and c 
vectors in (1) are approximated by 𝒖𝒖𝟏𝟏and 𝒗𝒗𝟏𝟏𝑻𝑻 normalized to 
amplitude one. The quality of this approximation can be 
assessed by the ratio of the highest singular value to the sum 
of all singular values:  

 𝐾𝐾 = 𝑠𝑠11
∑ 𝑠𝑠𝑖𝑖𝑖𝑖

. (6)  

The closer K is to 1, the better is the approximation in the 
MMSE sense. 

For phase distributions of the type of (3), the values of K 
only depend on the first term of (3), i.e. on the RA optics. This 
is exemplified in Table I, which shows the K values of an ideal 
square RA with 29x29 elements and edge illumination of -10 
dB, for two different focal length to diameter ratios (F/D), and 
for a center-fed and an offset configuration. In addition, Table 
I also shows the simulated gain reduction and the sidelobe 
level (SLL) increase experienced with the rank one 
approximation with respect to the traditional direct application 
of (3).  Two conclusions can be extracted: (i) large F/D ratios 
produce K values close to one enabling the use of the rank one 
approximation; (ii) K values close to one assure little impact 
on the radiation patterns when using the rank one 
approximation, while the effects become more unpredictable 
for reduced K. The reason for this last is that the radiation 
patterns are not only sensitive to the MMSE but to the 
distribution of errors across the RA [5].  

TABLE I. EVALUATION OF THE RANK ONE APPROXIMATION 
Configuration K Gain 

reduction 
(dB) 

SLL increase 
(dB) 

a) F/D=1, offset=0 0.91 0 0.2 
b) F/D=0.5, offset=0 0.67 0.6 9.5 
c) F/D=1, offset=0.5D 0.76 0.2 1.8 
d) F/D=0.5, offset=0.5D 0.45 1.9 6.8 

Fig. 2. compares the radiation patterns obtained for the four 
configurations considered in Table I when applying the phase 
distribution of (3) or their rank one approximation as in (5).  

 
Fig. 2. Radiation pattern [gain (dB)] comparison for the four configurations of 
Table I when pointing a beam towards (θ,φ)=(15°, 30°); i.e. (u,v)=(0.22, 
0.13). First row: ideal phase distribution as in (3); second row: rank one 
approximation as in (5). 

The rise of SLL and the deformation of the main beam 
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become evident for F/D = 0.5 configurations. The radiation 
patterns are shown in the angular coordinates u=sin(θ)cos(φ) 
and v=sin(θ)sin(φ). 

IV. DIGITAL BEAM-STEERING CONTROL 
In reference [3], a drastic reduction of the cell complexity is 

proposed by combining the row-column scheme with 1-bit 
quantization. In this case, the phase addition at cell level can 
be implemented as a simple XOR function. However, a SVD 
analysis using the RA configuration tagged as a) in previous 
section showed not only that the quantized version of SRA [i.e. 
𝑺𝑺𝑹𝑹𝑹𝑹 = 𝑒𝑒𝑗𝑗𝑄𝑄(𝝓𝝓𝑹𝑹𝑹𝑹) , being ϕRA the phase distribution in (3)] does 
not fulfil the separabilitiy condition, but that K values can be 
as low as 0.24 or 0.36 for 1-bit and 2-bit quantization, 
respectively. In these cases, K depends on the pointing 
direction; for example, the above values were obtained for 
(θ,φ)=(20°, 30°). The main reason is that the quantization of 
the addition of two terms is not equal to the addition of the 
two terms quantized.  

Therefore, a good rank one approximation in the MMSE 
sense does not exist in the digital case. However, since the 
relation between MMSE and the distortion of the radiation 
pattern is not direct [5], it is important to evaluate the effects 
of the digital row-column control on the radiation patterns. 
Three digital row-column schemes are discussed next: 

Scheme A: Following the analog implementation in Section 
III, the spherical illumination [first term of (3)] is 
compensated by a fixed phasing structure at each cell, and 
quantized versions of the other two terms are added at cell 
level, so 

 
𝜙𝜙𝑅𝑅𝑅𝑅,𝑖𝑖𝑖𝑖
𝑄𝑄 = 𝑘𝑘𝑑𝑑𝑖𝑖𝑖𝑖 − 𝑄𝑄(𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑜𝑜)

− 𝑄𝑄(𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑜𝑜) (7)  

where Q is the quantization function.  
Scheme B: First, the phase distribution in (3) is quantized. 

Then the rank one approximation to the corresponding 𝑺𝑺𝑹𝑹𝑹𝑹 =
𝑒𝑒𝑗𝑗𝑄𝑄(𝝓𝝓𝑹𝑹𝑹𝑹)   defined by (5) is applied. 

Scheme C: The r and c vectors building the desired rank 
one matrix in (1) are directly optimized using the iterative 
random search (RS) algorithm [6] depicted in Fig. 3.  

 
Fig. 3. Flow chart of the random search iteration. 

Fig. 4 compares the radiation patterns obtained by the three 
row-column schemes under 1-bit quantization, when forming 
a pencil beam towards (θ, φ)=(15°, 30°). The classical per 
element control is shown as a reference. Table II extends these 
results to a 2-bits quantization. 

 
Fig. 4. Radiation patterns [gain (dB)] obtained by the three schemes 
combining 1-bit and row-column control when pointing to (θ, φ)=(15°, 30°); 
i.e. (u, v)=(0.22, 0.13). Traditional 1-bit per-element control is shown as a 
reference. 

TABLE II. RADIATION PROPERTIES OBTAINED BY THE THREE DIGITAL ROW-
COLUMN SCHEMES WHEN POINTING TO (θ, φ)=(15°, 30°); ANALOG, 1- AND 2-
BITS PER-ELEMENT CONTROL ARE SHOWN AS A REFERENCE.  

Control scheme Gain (dB) SLL (dB) 
Analog per element control 32.7 -23.1 
1-bit per element control 28.9 -17.6 
1-bit row-column Scheme A 24.9 0 
1-bit row-column Scheme B 26.7 -8.9 
1-bit row-column Scheme C 26.9 -8.7 
2-bits per element control 31.8 -23 
2-bits row-column Scheme A 30.9 -10.2 
2-bits row-column Scheme C 31.4 -16.7 

For 1-bit quantization, it can be observed that Scheme A 
results in undesired quantization lobes with the same gain as 
the main beam. The reason is that the first term in (3) is just 
the term that randomizes the phase errors when ϕRA is 
quantized [5]. These lobes disappear when Schemes B and C 
are used, which provide very similar results. However, in both 
cases, the SLL at the principle plains of the main beam are 
above -10 dB, too high for most applications. The RS 
optimization of Scheme C was compared against the binary 
particle swarm optimization (BPSO) described in [7], and 
again, very similar results were obtained, confirming that the 
limitation is on the row-column solution and not on the 
optimization method. The BPSO results are omitted here for 
space constraints.  

The same trend is observed for 2-bits, but in this case, the 
direct optimization of Scheme C produces SLL below -16 dB, 
which start becoming acceptable in some applications. Note 
however, that the 2-bits implementation suffers again from 
high complexity since it cannot be just obtained through a 
XOR function as with 1-bit.  Indeed, the unit cell 
implementation for the 2-bits control could follow the analog 
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design of [4], substituting each varactor by multiple switches, 
but such implementation would require multiple control lines 
per row (column) limiting the benefits of the row-column 
scheme. Note also that the rank one approximation is not 
calculated for the 2-bits case, since the SVD of a phase 
distribution matrix quantified to 2-bits produces singular 
vectors whose values are not restricted to the four phase states. 

The analysis of the RA phase distributions gives a better 
idea of the limitations of the 1–bit and row-column 
combination. As shown in Fig. 5, the 1-bit row-column 
schemes produce rectangular blocks, which cannot emulate 
the circular shapes required for a proper beam focusing. 

 
Fig. 5. Comparison of the RA phase distributions (in degrees) with 1-bit 
quantization when pointing to (θ,φ)=(15°, 30°). 

V. ADVANCED BEAMFORMING  
So far, only pure beam steering has been discussed but 

other applications such as multi-beam or shaped beams can be 
also targeted by reconfigurable RAs.  In these cases, the rank 
of the targeted SRA, and more specifically its associated K 
value, can be used to predict the feasibility of the row-column 
scheme. In general, it has been observed that K values are only 
close to one in very particular cases such as having  the 
multiple beams or the special shapes constrained  in a  single 
u=ct or v=ct plane, where ct is a constant; or for a pure square 
beam. This is exemplified in Fig 6 and 7, which compare the 
radiation patterns obtained with the traditional per-element 
and the proposed row-column controls in a multi-beam and a 
shaped beam application, respectively. In both cases, an 
analog control is assumed and the row-column controls are 
obtained through optimization. Fig. 6 addresses a dual-beam  
RA pointing to (θ1, φ1)=(15°, 30°) and (θ2 ,φ2)=(30°, 130°); 
i.e. (u1, v1)=(0.22, 0.13) and (u2, v2)=(-0.32, 0.38).  

 
Fig. 6. Radiation patterns obtained by analog per-element and row-column 
controls when pointing at (θ1,φ1)=(15°, 30°) and (θ2, φ2)=(30°, 130°); i.e. 
(u1,v1)=(0.22,0.13) and (u2,v2)=(-0.32,0.38). 

 It can be observed that, in addition to the targeted beams, the 
row-column control produces two main undesired beams at 
(u1, v2) and (u2, v1). In this case, the value of K was 0.16, thus 
predicting the poor performance of the row-column scheme. 

Fig. 7 evaluates the feasibility of producing a circular beam 
shape centered at (θ,φ)=(15°,60°). Again a K value of 0.17, 
predicted a poor performance of the row-column control, 
which here translates to the conversion of the targeted circular 
beam into a square beam. 

 
Fig. 7. Radiation patterns obtained by analog per-element and row-column 
controls when synthesizing a circular beam shape centered at (θ1,φ1)=(15°, 
60°), i.e. (u1,v1)=(0.13,0.22). 

VI. CONCLUSION 
This letter analyzed a promising method for reducing the 

complexity of the control circuitry of RA based on addressing 
the elements by rows and columns. In contrast to the existing 
literature, it showed that this method only works in 
combination with analog controls or with phase quantization 
with at least two bits, though in this last case, the 
simplification in the number of control lines is limited. 
Moreover, the method is found to be generally applicable for 
pure beam steering applications only. A SVD analysis of the 
required phase distribution across the RA is proposed to 
predict the feasibility of the row-column control method in 
each case. 
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