Dataset Open Access

High-Level and Efficient Stream Parallelism on Multi-core Systems with SPar for Data Compression Applications

Griebler; Hoffmann; Loff; Danelutto; Fernandes


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <controlfield tag="005">20180309094143.0</controlfield>
  <controlfield tag="001">1194606</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Renato B.</subfield>
    <subfield code="a">Hoffmann</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Junior</subfield>
    <subfield code="a">Loff</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Marco</subfield>
    <subfield code="a">Danelutto</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Luiz Gustavo</subfield>
    <subfield code="a">Fernandes</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">3812133</subfield>
    <subfield code="z">md5:bb0d4348a6922d50d9bcf4547a86780e</subfield>
    <subfield code="u">https://zenodo.org/record/1194606/files/data.zip</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-03-09</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="o">oai:zenodo.org:1194606</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Dalvan</subfield>
    <subfield code="a">Griebler</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">High-Level and Efficient Stream Parallelism on Multi-core Systems with SPar for Data Compression Applications</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">644235</subfield>
    <subfield code="a">REfactoring Parallel Heterogeneous Resource-Aware Applications  - a Software Engineering Approach</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The stream processing domain is present in several real-world applications that are running on multi-core systems. In this paper, we focus on data compression applications that are an important sub-set of this domain. Our main goal is to assess the programmability and efficiency of domain-specific language called SPar. It was specially designed for expressing stream parallelism and it promises higher-level parallelism abstractions without significant performance losses. Therefore, we parallelized Lzip and Bzip2 compressors&lt;br&gt;
with SPar and compared with state-of-the-art frameworks. The results revealed that SPar is able to efficiently exploit stream parallelism as well as provide suitable abstractions with less code intrusion and code re-factoring.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.1194605</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.1194606</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
8
2
views
downloads
All versions This version
Views 88
Downloads 22
Data volume 7.6 MB7.6 MB
Unique views 88
Unique downloads 22

Share

Cite as