Dataset Open Access

High-Level and Productive Stream Parallelism for Dedup, Ferret, and Bzip2

Griebler; Hoffman; Danelutto; Fernandes


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.1194598</identifier>
  <creators>
    <creator>
      <creatorName>Griebler</creatorName>
      <affiliation>Dalvan</affiliation>
    </creator>
    <creator>
      <creatorName>Hoffman</creatorName>
      <affiliation>Renato B.</affiliation>
    </creator>
    <creator>
      <creatorName>Danelutto</creatorName>
      <affiliation>Marco</affiliation>
    </creator>
    <creator>
      <creatorName>Fernandes</creatorName>
      <affiliation>Luiz Gustavo</affiliation>
    </creator>
  </creators>
  <titles>
    <title>High-Level and Productive Stream Parallelism for Dedup, Ferret, and Bzip2</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>High-level parallelism · Parallel programming · Stream processing · Parallel patterns · Pipeline parallelism · Streaming applications</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-03-09</date>
  </dates>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1194598</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1194597</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Parallel programming has been a challenging task for application programmers. Stream processing is an application domain present in several scientific, enterprise, and financial areas that lack suitable abstractions to exploit parallelism.&lt;br&gt;
Our goal is to assess the feasibility of state-of-the-art frameworks/libraries (Pthreads, TBB, and FastFlow) and the SPar domain-specific language for real-world streaming applications (Dedup, Ferret, and Bzip2) targeting multi-core architectures. SPar was specially designed to provide high-level and productive stream parallelism abstractions, supporting programmers with standard C++-11 annotations. For the experiments, we implemented three streaming applications. We discussed SPar&amp;rsquo;s programmability advantages compared to the frameworks in terms of productivity and structured parallel programming. The results demonstrate that SPar improves productivity and provides the necessary features to achieve similar performances compared to the state-of-the-art.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/644235/">644235</awardNumber>
      <awardTitle>REfactoring Parallel Heterogeneous Resource-Aware Applications  - a Software Engineering Approach</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
11
1
views
downloads
All versions This version
Views 1111
Downloads 11
Data volume 811.3 kB811.3 kB
Unique views 1111
Unique downloads 11

Share

Cite as