Dataset Open Access

Idealized single-forcing GCM simulations with GFDL CM2.1

Erb, Michael; Broccoli, Anthony; Raney, Bryan


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.1194480</identifier>
  <creators>
    <creator>
      <creatorName>Erb, Michael</creatorName>
      <givenName>Michael</givenName>
      <familyName>Erb</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-1187-952X</nameIdentifier>
      <affiliation>Northern Arizona University</affiliation>
    </creator>
    <creator>
      <creatorName>Broccoli, Anthony</creatorName>
      <givenName>Anthony</givenName>
      <familyName>Broccoli</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-2619-1434</nameIdentifier>
      <affiliation>Rutgers, The State University of New Jersey</affiliation>
    </creator>
    <creator>
      <creatorName>Raney, Bryan</creatorName>
      <givenName>Bryan</givenName>
      <familyName>Raney</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-9513-4807</nameIdentifier>
      <affiliation>Rutgers, The State University of New Jersey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Idealized single-forcing GCM simulations with GFDL CM2.1</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>Climate, Modeling, GCM, GFDL, CM2.1, Paleoclimate, Milankovitch, Obliquity, Precession, Eccentricity, CO2, Ice sheets, Single-forcing, Fingerprint</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-04-09</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1194480</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1194479</relatedIdentifier>
  </relatedIdentifiers>
  <version>1.0.0</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This repository contains a set of single-forcing general circulation model (GCM) simulations run with the Geophysical Fluid Dynamics Laboratory (GFDL) Climate Model 2.1 (CM2.1).&amp;nbsp; In each of these equilibrium simulations, one climate forcing was altered while all others were held constant at preindustrial levels, modeling the climate response to individual climate forcings.&amp;nbsp; Simulations were run for obliquity (low and high obliquity), precession (four phases of the precession cycle with high eccentricity, and one simulation with eccentricity set to zero), half CO&lt;sub&gt;2&lt;/sub&gt;, and LGM-sized ice sheets.&amp;nbsp; The values chosen for the orbital simulations represent the extreme values of the past 900 thousand years.&lt;/p&gt;

&lt;p&gt;Simulations were run for at least 500 years, and forcings do not change from year to year.&amp;nbsp; The uploaded files are 100 year annual-means and monthly climatologies.&amp;nbsp; Variables are presented for the atmosphere, ocean, sea ice, and land.&amp;nbsp; Monthly ocean files are not currently available; please contact Michael Erb at michael.p.erb@gmail.com if you are interested in those results.&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;=== FORCINGS ===&lt;/p&gt;

&lt;p&gt;Preindustrial climate forcings were set to the following values:&lt;/p&gt;

&lt;p&gt;&amp;nbsp;- Obliquity: 23.439&amp;deg;&lt;/p&gt;

&lt;p&gt;&amp;nbsp;- Longitude of perihelion: 102.93&amp;deg;&lt;/p&gt;

&lt;p&gt;&amp;nbsp;- Eccentricity: 0.0167&lt;/p&gt;

&lt;p&gt;&amp;nbsp;- CO&lt;sub&gt;2&lt;/sub&gt;: 286 ppm&lt;/p&gt;

&lt;p&gt;&amp;nbsp;- Ice sheets: 0 ka BP&lt;/p&gt;

&lt;p&gt;The remaining simulations explore the climate response to a change in one of these forcings, with all other forcings set to preindustrial levels.&amp;nbsp; Forcings are specified as follows:&lt;/p&gt;

&lt;p&gt;&amp;nbsp;- lo_obliq and hi_obliq: Obliquity is set to 22.079&amp;deg; or 24.480&amp;deg;, respectively.&lt;/p&gt;

&lt;p&gt;&amp;nbsp;- 0_AEQ, 90_WSOL, 180_VEQ, and 270_SSOL: Perihelion occurs at the NH autumnal equinox, winter solstice, vernal equinox, or summer solstice, respectively, with eccentricity set to 0.0493.&amp;nbsp; This corresponds to a longitude of perihelion of 0&amp;deg;, 90&amp;deg;, 180&amp;deg;, or 270&amp;deg;, respectively.&lt;/p&gt;

&lt;p&gt;&amp;nbsp;- ECC_0: Eccentricity is set to 0.&lt;/p&gt;

&lt;p&gt;&amp;nbsp;- half_CO2: CO&lt;sub&gt;2&lt;/sub&gt; is set to 143 ppm.&lt;/p&gt;

&lt;p&gt;&amp;nbsp;- ice_sheets: Ice sheets and sea level are set to Last Glacial Maximum (LGM) levels.&amp;nbsp; Ice sheets come from the ICE-5G reconstruction.&lt;/p&gt;

&lt;p&gt;A note about preindustrial simulations: The single-forcing simulations were not all run at the same time, and some details of the model or setup changed.&amp;nbsp; Because of this, if a preindustrial control simulation is wanted for analysis, it is recommended that you use certain preindustrial simulations for certain comparisons, as follows:&lt;/p&gt;

&lt;p&gt;- preind_exp1: Control simulation for obliquity simulations.&lt;/p&gt;

&lt;p&gt;- preind_exp2: Control simulation for precession, eccentricity, and half CO&lt;sub&gt;2&lt;/sub&gt; simulations.&lt;/p&gt;

&lt;p&gt;- preind_exp3: Control simulation for ice sheets simulation.&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;=== NOTES ===&lt;/p&gt;

&lt;p&gt;More detailed description of these simulations, as well as results, can be found in the following papers:&lt;/p&gt;

&lt;p&gt;Mantsis, D. F., A. C. Clement, A. J. Broccoli, and M. P. Erb, 2011: Climate feedbacks in response to changes in obliquity. &lt;em&gt;J. Climate&lt;/em&gt;, &lt;strong&gt;24&lt;/strong&gt;, 2830-2845, doi:10.1175/2010CJLI3986.1.&lt;/p&gt;

&lt;p&gt;Erb, M. P., A. J. Broccoli, and A. C. Clement, 2013: The contribution of radiative feedbacks to obliquity driven climate change. &lt;em&gt;J. Climate&lt;/em&gt;, &lt;strong&gt;26&lt;/strong&gt;, 5897-5914, doi:10.1175/JCLI-D-12-00419.1.&lt;/p&gt;

&lt;p&gt;Mantsis, D. F., B. R. Lintner, A. J. Broccoli, M. P. Erb, A. C. Clement, and H.-S. Park, 2014: The response of large-scale circulation to obliquity-induced changes in meridional heating gradients. &lt;em&gt;J. Climate&lt;/em&gt;, &lt;strong&gt;27&lt;/strong&gt;, 5504-5516, doi:10.1175/JCLI-D-13-00526.1.&lt;/p&gt;

&lt;p&gt;Erb, M. P., A. J. Broccoli, N. T. Graham, A. C. Clement, A. T. Wittenberg, and G. A. Vecchi, 2015: Response of the equatorial Pacific seasonal cycle to orbital forcing. &lt;em&gt;J. Climate&lt;/em&gt;, &lt;strong&gt;28&lt;/strong&gt;, 9258-9276, doi:10.1175/JCLI-D-15-0242.1.&lt;/p&gt;

&lt;p&gt;Erb, M. P., C. S. Jackson, and A. J. Broccoli, 2015: Using single-forcing GCM simulations to reconstruct and interpret Quaternary climate change. &lt;em&gt;J. Climate&lt;/em&gt;, &lt;strong&gt;28&lt;/strong&gt;, 9746-9767, doi:10.1175/JCLI-D-15-0329.1.&lt;/p&gt;

&lt;p&gt;Erb, M. P., C. S. Jackson, A. J. Broccoli, D. W. Lea, P. J. Valdes, M. Crucifix, and P. N. DiNezio, in press: Model evidence for a seasonal bias in Antarctic ice cores. &lt;em&gt;Nature Communications&lt;/em&gt;.&lt;/p&gt;

&lt;p&gt;Bosmans, J. H. C., M. P. Erb, A. M. Dolan, S. S. Drijfhout, E. Tuenter, F. J. Hilgen, D. Edge, J. O. Pope, and L. J. Lourens, in press: Response of the Asian summer monsoons to idealized precession and obliquity forcing in a set of GCMs. &lt;em&gt;Quat. Sci. Rev.&lt;/em&gt;&lt;/p&gt;

&lt;p&gt;Note that the monthly data analyzed in some of these papers has been converted to a common fixed-angular calendar in which every &amp;quot;month&amp;quot; corresponds to a 30&amp;deg; arc of Earth&amp;#39;s orbit.&amp;nbsp; This was done because changes in precession affect the speed at which Earth travels through different parts of its orbit according to Kepler&amp;#39;s second law, complicating the comparison of months in different precession experiments.&amp;nbsp; However, the results provided in this repository use the model&amp;#39;s original fixed-day calendar.&lt;/p&gt;

&lt;p&gt;The half_CO2, ice_sheets, and preind_exp3 simulations were run by Bryan Raney (braney@envsci.rutgers.edu).&amp;nbsp; Most of the remaining experiments were run by Michael Erb.&amp;nbsp; If you use these simulations for research, please let us know.&lt;/p&gt;

&lt;p&gt;For a similar set of experiments using another model (NCAR CESM), see doi:10.5281/zenodo.1194490.&lt;/p&gt;

&lt;p&gt;Contact:&lt;br&gt;
Michael Erb&lt;br&gt;
Postdoctoral Scholar at Northern Arizona University&lt;br&gt;
michael.p.erb@gmail.com&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>National Science Foundation</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100000001</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/NSF/Directorate+for+Geosciences/0902735/">0902735</awardNumber>
      <awardTitle>Collaborative Research: P2C2--Orbital Timescale Climate Variability: Simulation of Mechanisms and Comparison with Paleoclimate Observations</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
285
2,745
views
downloads
All versions This version
Views 285285
Downloads 2,7452,745
Data volume 543.6 GB543.6 GB
Unique views 269269
Unique downloads 377377

Share

Cite as