Conference paper Open Access

Keeping linked open data caches up-to-date by predicting the life-time of RDF triples

Nishioka, Chifumi; Scherp, Ansgar


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="942" ind1=" " ind2=" ">
    <subfield code="a">2018-08-26</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Web crawling</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Resource Description Framework (RDF)</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Data management systems</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Temporal data</subfield>
  </datafield>
  <controlfield tag="005">20200120161931.0</controlfield>
  <controlfield tag="001">1193247</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Scherp 	Kiel University and ZBW - Leibniz Information Centre for Economics, Kiel, Germany</subfield>
    <subfield code="a">Scherp, Ansgar</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">946795</subfield>
    <subfield code="z">md5:803ccd2751aef8f5172e45df78478640</subfield>
    <subfield code="u">https://zenodo.org/record/1193247/files/wi17-crawling.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-08-23</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-moving-h2020</subfield>
    <subfield code="o">oai:zenodo.org:1193247</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Kyoto University Library</subfield>
    <subfield code="a">Nishioka, Chifumi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Keeping linked open data caches up-to-date by predicting the life-time of RDF triples</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-moving-h2020</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">693092</subfield>
    <subfield code="a">Training towards a society of data-savvy information professionals to enable open leadership innovation</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Many Linked Open Data applications require fresh copies of RDF data at their local repositories. Since RDF documents constantly change and those changes are not automatically propagated to the LOD applications, it is important to regularly visit the RDF documents to refresh the local copies and keep them up-to-date. For this purpose, crawling strategies determine which RDF documents should be preferentially fetched. Traditional crawling strategies rely only on how an RDF document has been modified in the past. In contrast, we predict on the triple level whether a change will occur in the future. We use the weekly snapshots of the DyLDO dataset as well as the monthly snapshots of the Wikidata dataset. First, we conduct an in-depth analysis of the life span of triples in RDF documents. Through the analysis, we identify which triples are stable and which are ephemeral. We introduce different features based on the triples and apply a simple but effective linear regression model. Second, we propose a novel crawling strategy based on the linear regression model. We conduct two experimental setups where we vary the amount of available bandwidth as well as iteratively observe the quality of the local copies over time. The results demonstrate that the novel crawling strategy outperforms the state of the art in both setups.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1145/3106426.3106463</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
47
76
views
downloads
Views 47
Downloads 76
Data volume 72.0 MB
Unique views 41
Unique downloads 75

Share

Cite as