Conference paper Open Access

Keeping linked open data caches up-to-date by predicting the life-time of RDF triples

Nishioka, Chifumi; Scherp, Ansgar


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/1193247</identifier>
  <creators>
    <creator>
      <creatorName>Nishioka, Chifumi</creatorName>
      <givenName>Chifumi</givenName>
      <familyName>Nishioka</familyName>
      <affiliation>Kyoto University Library</affiliation>
    </creator>
    <creator>
      <creatorName>Scherp, Ansgar</creatorName>
      <givenName>Ansgar</givenName>
      <familyName>Scherp</familyName>
      <affiliation>Scherp 	Kiel University and ZBW - Leibniz Information Centre for Economics, Kiel, Germany</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Keeping linked open data caches up-to-date by predicting the life-time of RDF triples</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2017</publicationYear>
  <subjects>
    <subject>Web crawling</subject>
    <subject>Resource Description Framework (RDF)</subject>
    <subject>Data management systems</subject>
    <subject>Temporal data</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2017-08-23</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1193247</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1145/3106426.3106463</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/moving-h2020</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Many Linked Open Data applications require fresh copies of RDF data at their local repositories. Since RDF documents constantly change and those changes are not automatically propagated to the LOD applications, it is important to regularly visit the RDF documents to refresh the local copies and keep them up-to-date. For this purpose, crawling strategies determine which RDF documents should be preferentially fetched. Traditional crawling strategies rely only on how an RDF document has been modified in the past. In contrast, we predict on the triple level whether a change will occur in the future. We use the weekly snapshots of the DyLDO dataset as well as the monthly snapshots of the Wikidata dataset. First, we conduct an in-depth analysis of the life span of triples in RDF documents. Through the analysis, we identify which triples are stable and which are ephemeral. We introduce different features based on the triples and apply a simple but effective linear regression model. Second, we propose a novel crawling strategy based on the linear regression model. We conduct two experimental setups where we vary the amount of available bandwidth as well as iteratively observe the quality of the local copies over time. The results demonstrate that the novel crawling strategy outperforms the state of the art in both setups.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/693092/">693092</awardNumber>
      <awardTitle>Training towards a society of data-savvy information professionals to enable open leadership innovation</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
47
76
views
downloads
Views 47
Downloads 76
Data volume 72.0 MB
Unique views 41
Unique downloads 75

Share

Cite as