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Abstract

The purpose of this paper is to derive the mathematical equations which
govern the movements of a Hooke’s joint, also known as a universal joint. A
Hooke’s joint has an input shaft and an output shaft. If the input shaft rotates
through an angle IN, then the output shaft will simultaneously rotate through
an angle OUT. The functional relationship between input angle and output
angle is a function of the angular offsets between the two shafts and of the
original state of the Hooke’s joint for zero angle IN. The derivation is obtained
by considering the individual three dimensional rotations that characterize an
arbitrary Hooke’s joint state. These rotations are represented by 3x3 rotation
matrices. An electro-mechanical magnetic flux-gate compass application is also
discussed.
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1 Derivation of Hooke’s Joint Equations

An arbitrary orientation of a rigid body in three-dimensional space can be
achieved by small number of successive rotations of the body around specific axes
from an initial set of axes. Corresponding to these (physical) rotations are rotation
matrices, mathematical devices relating the Cartesian coordinates of any point or
vector components measured in the initial coordinate system to the coordinates mea-
sured in the final coordinate system. Successive physical rotations are represented by
successive multiplications of rotation matrices.
We will derive the equations for the Hooke’s joint step-by-step, considering the

individual rotation matrices needed to explain its operation.

Figure 1 below depicts a Hooke’s joint with the axles or shafts translated in
space. Ideally, a Hooke’s joint might consist of rings or gimbals having a common
origin around which all rotations would occur.
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The purpose of having the axes translated or spread out in space in Figure 1 is
to provide a picture which might better illustrate the rotations that are mathemati-
cally described as occurring sequentially. In reality, the various rotations considered
do not occur sequentially; however, the mathematical model of the resultant three
dimensional rotation is considered as a product of rotations around individual axes.
The angles and rotations considered by individual matrices can be examined singly
by referring to the single rotation matrices which account for them.

Figure 1: The Hooke Joint.

1.1 Hookejoint Rotations

Sequentially cause the following rotations to the device depicted in Figure 1. The
first rotation is at the left of the figure, and the last one is at the right.

• Step 1. Rotate coordinate system S1 around x1 axis by angle α : x2
y2
z2

 = X(α)

 x1
y1
z1

, α ∈ [0, π/2];
• Step 2. Rotate coordinate system S2 around axis y2 by angle β : x3

y3
z3

 = Y (β)

 x2
y2
z2

 ;
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Let H(α, β) be the Hooke’s joint matrix defined by

H(α, β) = Y (β)X(α) (1) x3
y3
z3

 = H(α, β)

 x1
y1
z1

 (2)

H(α, β) =

 cos β 0 − sin β
0 1 0
sin β 0 cos β

 1 0 0
0 cosα sinα
0 − sinα cosα



H(α, β) =

 cos β sinα sin β − cosα sin β
0 cosα sinα
sin β − sinα cos β cosα cos β

 (3)

 x1
y1
z1

 = R

 sinφ1 cos θ1
sinφ1 sin θ1
cosφ1

 and

 x3
y3
z3

 = R

 sinφ3 cos θ3
sinφ3 sin θ3
cosφ3


 sinφ3 cos θ3
sinφ3 sin θ3
cosφ3

 =

 cos β sinα sin β − cosα sin β
0 cosα sinα
sin β − sinα cos β cosα cos β

 sinφ1 cos θ1
sinφ1 sin θ1
cosφ1


But φ3 = φ1 = 90

◦, since there are no vector components along the z1 or z3 axes, cos θ3
sin θ3
0

 =

 cos β sinα sin β − cosα sin β
0 cosα sinα
sin β − sinα cos β cosα cos β

 cos θ1
sin θ1
0


 cos θ3
sin θ3
0

 =

 cos β cos θ1 + sinα sin β sin θ1
cosα sin θ1

cos θ1 sin β − cos β sinα sin θ1



cos θ3 = cos β cos θ1 + sinα sin β sin θ1 (4)
sin θ3 = cosα sin θ1 (5)
0 = cos θ1 sin β − cos β sinα sin θ1 (6)

(4)× sin β ⇒ cos θ3 sin β = sin β cos β cos θ1 + sinα sin
2 β sin θ1

(6)× cos β ⇒ 0 = cos θ1 sin β cos β − cos2 β sinα sin θ1
Subtracting, the last equation from the previous equation,
⇒ cos θ3 sin β = sinα sin θ1

But from (6), sinα sin θ1 =
cos θ1 sin β

cos β
, so cos θ3 =

cos θ1
cos β

Dividing (5) by this equation ⇒
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tan θ3 = cosα cos β tan θ1 (7)

In general, let R be a vector R = ix+ j y + k z = (i , j ,k )

 x
y
z

, where i , j ,k
are unit vectors.

k3 · k1 = z3/z1 = cosφ, where φ is the angle between the z3 axis and the z1 axis. 0
0
1


1

and

 0
0
1


3

are the components of the unit vectors along the z1 and

z3 axes respectively.
Computing the scalar product of unit vectors, we obtain

k3 · k1 = (0, 0, 1)1

 0
0
1


3

= (0, 0, 1)1 H(α, β)

 0
0
1


1

H(α, β)

 0
0
1


1

=

 cos β sinα sin β − cosα sin β
0 cosα sinα
sin β − sinα cos β cosα cos β

 0
0
1


1

=

 − cosα sin βsinα
cosα cos β

;
Therefore, (0, 0, 1)1

 0
0
1


3

= (0, 0, 1)1

 − cosα sin βsinα
cosα cos β


1

= cosα cos β.

∴ cosα cos β = cosφ (8)

Substituting (8) into (7), we obtain the equation of the Hooke’s joint usually
encountered in texts.

tan θ3 = tan θ1 cosφ (9)

1.2 An Application

Consider an electro-mechanical compass of the following description. In the
past, such compasses had been found to be useful, for example, on oceanographic
data buoys and in bore-hole surveying. Modern day compasses dispense with this
electro-mechanical servo system described here and use strap-down sensors instead.

A magnetic flux-gate is a species of magnetic sensor or magnetic flux detector
(MFD) quite suitable for measuring the geomagnetic field intensity on the surface of
the earth.
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A pendulous single-axis magnetic flux-gate hangs suspended from the lower
Hooke’s joint. If the compass tilts, the flux-gate remains in a horizontal position
with the lower shaft of the Hooke’s joint vertical. The upper shaft of the Hooke’s
joint, aligned with the longitudinal axis of the compass case, is coupled to a small
instrument servo-motor and a potentiometer (POT), which device is also fixed to
the case. The potentiometer is the output transducer and provides a D.C. output
voltage proportional to the angle through which the upper shaft turns. The flux-
gate is provided with an electrical excitation circuit, synchronous demodulator and
motor drive amplifier, circuits typically employed for magnetic flux-gate operation.
The flux-gate, together with this electronic circuitry, constitute a magnetometer of
sorts. The maximum output voltage occurs when the sensitive axis of the flux-gate is
facing magnetic North. When it is facing East and West, the output voltage will be
zero. This output voltage drives the servo-motor to rotate the Hooke’s joint until the
output voltage is zero and the sensitive axis of the MFD is oriented at right angles
to magnetic North.

In typical deployment, the compass will (inadvertently) experience different de-
grees of tilt φ, and yet be expected to provide correct co-azimuths. The tilt angle φ
(aka Slant Angle SA) must be input by the user or by a tilt sensor into the compass
system to obtain correct co-azimuth. The angles θ1 and θ3 are measured in stan-
dard mathematical format. However, we are usually interested in azimuth, which
in navigational format, is measured in the opposite direction. We may simply use
Azimuth = 360·− Co-azimuth or reverse the excitation voltage connections to P1 and
P2 on the POT (Reference: Figure 2). A typical POT excitation voltage might be,
for example, regulated 3.60 VDC, for a sensitivity of 10mV/degree.

If the compass case is rotated through a co-azimuth of, say θ1, the motor will
rotate the Hooke’s joint until the lower shaft rotates by an angle −θ1, keeping the
MFD always pointing in the same direction, toward magnetic North. However, the
upper shaft and POT wiper will rotate through a different angle −θ3, relative to
the POT and compass case, which angle must be corrected for any "Hookejoint
error". The POT voltage can be measured with a digital-to-analog converter (DAC)
connected to a micro-controller programmed with equation (9) for this correction.
Figure 2 represents an electro-mechanical compass for use on ocean data buoys. The
longitudinal axis of the compass case is z3. A forward marker arrow FWD is attached
to the top of the compass case.

The same configuration might be employed in a geophysical survey probe, aug-
mented by an angle ψ through which the survey probe might be rotated. The an-
gle ψ is measured in standard mathematical format. Alternatively, tool face angle
TF = 360◦ − ψ, measured in navigational format, may be employed.
The angle θ3 (measured by the POT) must be compensated for tool face angle to

give measured azimuth, θmeas = θ3 − TF , and then corrected for Hooke’s joint error.
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Figure 2: An Electro-Mechanical Compass.

� End
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