Conference paper Open Access

Aspiration-based Perturbed Learning Automata

Chasparis, Georgios

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Learning automata, distributed optimization, coordination games</subfield>
  <controlfield tag="005">20180308094143.0</controlfield>
  <controlfield tag="001">1186662</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">12-15 June 2018</subfield>
    <subfield code="g">ECC'18</subfield>
    <subfield code="a">European Control Conference 2018</subfield>
    <subfield code="c">Limassol, Cyprus</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">307279</subfield>
    <subfield code="z">md5:81a328c1ef9fe40cc1354e22b059b085</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u"></subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-03-01</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o"></subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Software Competence Center Hagenberg GmbH</subfield>
    <subfield code="0">(orcid)0000-0003-3059-3575</subfield>
    <subfield code="a">Chasparis, Georgios</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Aspiration-based Perturbed Learning Automata</subfield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">644235</subfield>
    <subfield code="a">REfactoring Parallel Heterogeneous Resource-Aware Applications  - a Software Engineering Approach</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;This paper introduces a novel payoff-based learning scheme for distributed optimization in repeatedly-played strategic-form games. Standard reinforcement-based learning exhibits several limitations with respect to their asymptotic stability. For example, in two-player coordination games, payoff-dominant (or efficient) Nash equilibria may not be stochastically stable. In this work, we present an extension of perturbed learning automata, namely aspiration-based perturbed learning automata (APLA) that overcomes these limitations. We provide a stochastic stability analysis in multi-player coordination games. In the case of two-player coordination games, we show that the payoff-dominant Nash equilibrium is the unique stochastically stable state.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.1186661</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.1186662</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
All versions This version
Views 33
Downloads 22
Data volume 614.6 kB614.6 kB
Unique views 33
Unique downloads 22


Cite as