Conference paper Open Access

Aspiration-based Perturbed Learning Automata

Chasparis, Georgios


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Chasparis, Georgios</dc:creator>
  <dc:date>2018-03-01</dc:date>
  <dc:description>This paper introduces a novel payoff-based learning scheme for distributed optimization in repeatedly-played strategic-form games. Standard reinforcement-based learning exhibits several limitations with respect to their asymptotic stability. For example, in two-player coordination games, payoff-dominant (or efficient) Nash equilibria may not be stochastically stable. In this work, we present an extension of perturbed learning automata, namely aspiration-based perturbed learning automata (APLA) that overcomes these limitations. We provide a stochastic stability analysis in multi-player coordination games. In the case of two-player coordination games, we show that the payoff-dominant Nash equilibrium is the unique stochastically stable state.</dc:description>
  <dc:identifier>https://zenodo.org/record/1186662</dc:identifier>
  <dc:identifier>10.5281/zenodo.1186662</dc:identifier>
  <dc:identifier>oai:zenodo.org:1186662</dc:identifier>
  <dc:relation>info:eu-repo/grantAgreement/EC/H2020/644235/</dc:relation>
  <dc:relation>doi:10.5281/zenodo.1186661</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>http://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>Learning automata, distributed optimization, coordination games</dc:subject>
  <dc:title>Aspiration-based Perturbed Learning Automata</dc:title>
  <dc:type>info:eu-repo/semantics/conferencePaper</dc:type>
  <dc:type>publication-conferencepaper</dc:type>
</oai_dc:dc>
8
15
views
downloads
All versions This version
Views 88
Downloads 1515
Data volume 4.6 MB4.6 MB
Unique views 88
Unique downloads 1515

Share

Cite as