Conference paper Open Access

ITI-CERTH participation in TRECVID 2017

Markatopoulou, Foteini; Moumtzidou, Anastasia; Galanopoulos, Damianos; Avgerinakis, Konstantinos; Andreadis, Stelios; Gialampoukidis, Ilias; Tachos, Stavros; Vrochidis, Stefanos; Mezaris, Vasileios; Kompatsiaris, Ioannis; Patras, Ioannis


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/e2598aad-cdd9-4d90-a7dd-6c69d7318993/trecvid2017.pdf"
      }, 
      "checksum": "md5:1cb8b54ab9e6dd8eacb18d8a22311974", 
      "bucket": "e2598aad-cdd9-4d90-a7dd-6c69d7318993", 
      "key": "trecvid2017.pdf", 
      "type": "pdf", 
      "size": 4657322
    }
  ], 
  "owners": [
    26037
  ], 
  "doi": "10.5281/zenodo.1183440", 
  "stats": {
    "version_unique_downloads": 10.0, 
    "unique_views": 26.0, 
    "views": 26.0, 
    "downloads": 11.0, 
    "unique_downloads": 10.0, 
    "version_unique_views": 26.0, 
    "volume": 51230542.0, 
    "version_downloads": 11.0, 
    "version_views": 26.0, 
    "version_volume": 51230542.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.1183440", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.1183439", 
    "bucket": "https://zenodo.org/api/files/e2598aad-cdd9-4d90-a7dd-6c69d7318993", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.1183439.svg", 
    "html": "https://zenodo.org/record/1183440", 
    "latest_html": "https://zenodo.org/record/1183440", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.1183440.svg", 
    "latest": "https://zenodo.org/api/records/1183440"
  }, 
  "conceptdoi": "10.5281/zenodo.1183439", 
  "created": "2018-02-23T09:47:22.603105+00:00", 
  "updated": "2018-02-23T12:21:52.071751+00:00", 
  "conceptrecid": "1183439", 
  "revision": 4, 
  "id": 1183440, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.1183440", 
    "description": "<p>This paper provides an overview of the runs submitted to TRECVID 2017 by ITI-CERTH. ITI-CERTH participated in the Ad-hoc Video Search (AVS), Multimedia Event Detection (MED), Instance Search (INS) and Surveillance Event Detection (SED) tasks. Our AVS task participation is based on a method that combines the linguistic analysis of the query with concept-based and semantic-embedding representations of video fragments. Regarding the MED task, this year we participate on Pre-Specied and Ah-Hoc sub-tasks exploiting both motion-based as well as DCNN-based features. The INS task is performed by employing VERGE, which is an interactive retrieval application that integrates retrieval functionalities that consider mainly visual information. For the SED task, we deploy a novel activity detection algorithm that is based on human detection in video frames, goal descriptors, dense trajectories, Fisher vectors and a discriminative action segmentation scheme.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "ITI-CERTH participation in TRECVID 2017", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "1183439"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "1183440"
          }
        }
      ]
    }, 
    "grants": [
      {
        "code": "700475", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::700475"
        }, 
        "title": "Enhancing decision support and management services in extreme weather climate events", 
        "acronym": "beAWARE", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [
            "EC"
          ], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }, 
      {
        "code": "700024", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::700024"
        }, 
        "title": "Retrieval and Analysis of Heterogeneous Online Content for Terrorist Activity Recognition", 
        "acronym": "TENSOR", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [
            "EC"
          ], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }, 
      {
        "code": "687786", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::687786"
        }, 
        "title": "In Video Veritas \u2013 Verification of Social Media Video Content for the News Industry", 
        "acronym": "InVID", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [
            "EC"
          ], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }, 
      {
        "code": "732665", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::732665"
        }, 
        "title": "Enriching Market solutions for content Management and publishing with state of the art multimedia Analysis techniques", 
        "acronym": "EMMA", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [
            "EC"
          ], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "communities": [
      {
        "id": "emma-h2020"
      }, 
      {
        "id": "invid-h2020"
      }
    ], 
    "publication_date": "2018-02-23", 
    "creators": [
      {
        "affiliation": "Information Technologies Institute/Centre for Research and Technology Hellas", 
        "name": "Markatopoulou, Foteini"
      }, 
      {
        "affiliation": "Information Technologies Institute/Centre for Research and Technology Hellas", 
        "name": "Moumtzidou, Anastasia"
      }, 
      {
        "affiliation": "Information Technologies Institute/Centre for Research and Technology Hellas", 
        "name": "Galanopoulos, Damianos"
      }, 
      {
        "affiliation": "Information Technologies Institute/Centre for Research and Technology Hellas", 
        "name": "Avgerinakis, Konstantinos"
      }, 
      {
        "affiliation": "Information Technologies Institute/Centre for Research and Technology Hellas", 
        "name": "Andreadis, Stelios"
      }, 
      {
        "affiliation": "Information Technologies Institute/Centre for Research and Technology Hellas", 
        "name": "Gialampoukidis, Ilias"
      }, 
      {
        "affiliation": "Information Technologies Institute/Centre for Research and Technology Hellas", 
        "name": "Tachos, Stavros"
      }, 
      {
        "affiliation": "Information Technologies Institute/Centre for Research and Technology Hellas", 
        "name": "Vrochidis, Stefanos"
      }, 
      {
        "affiliation": "Information Technologies Institute/Centre for Research and Technology Hellas", 
        "name": "Mezaris, Vasileios"
      }, 
      {
        "affiliation": "Information Technologies Institute/Centre for Research and Technology Hellas", 
        "name": "Kompatsiaris, Ioannis"
      }, 
      {
        "affiliation": "Queen Mary University of London", 
        "name": "Patras, Ioannis"
      }
    ], 
    "meeting": {
      "dates": "November 2017", 
      "place": "Gaithersburg, MD, USA", 
      "title": "TRECVID 2017 Workshop"
    }, 
    "access_right": "open", 
    "resource_type": {
      "subtype": "conferencepaper", 
      "type": "publication", 
      "title": "Conference paper"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.1183439", 
        "relation": "isVersionOf"
      }
    ]
  }
}
26
11
views
downloads
All versions This version
Views 2626
Downloads 1111
Data volume 51.2 MB51.2 MB
Unique views 2626
Unique downloads 1010

Share

Cite as