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Abstract

High dynamic range (HDR) images require tone reproduction to match the range of

values to the capabilities of a display. For computational reasons and given the absence

of fully calibrated imagery, rudimentary color reproduction is often added as a post-

processing step rather than integrated into tone reproduction algorithms. In the general

case, this currently requires manual parameter tuning, and can be automated only for

some global tone reproduction operators by inferring parameters from the tone curve.

We present a novel and fully automatic saturation correction technique, suitable for any

tone reproduction operator (including inverse tone reproduction), which exhibits fewer

distortions in hue and luminance reproduction than the current state-of-the-art. We

validated its comparative effectiveness through subjective experiments and objective

metrics. Our experiments confirm that saturation correction significantly contributes

toward the perceptually plausible color reproduction of tonemapped content and would,

therefore, be useful in any color-critical application.
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Figure 1: The same HDR image was tonemapped with different operators (left - [1], right - [2]). The left

tonemapped image is overly saturated, while the right image has reduced the saturation too far. With our

method, both images are automatically corrected to have a similar appearance (source image from [3]).

1. Introduction

Recent advances in both capture and display technologies allow images of a much

wider dynamic range to be photographed, manipulated, and displayed; better captur-

ing the light of natural scenes and giving artists unparalleled freedom. Although HDR

standards and workflows are being defined and have begun to be adopted, they are not5

yet mainstream. As such, HDR technologies currently coexist with more prevalent

consumer imaging pipelines [4]. HDR data often needs to be compressed for display

on most current displays, a process known as tonemapping or tone reproduction. In

contrast, existing low dynamic range (LDR) data may need to be expanded or recon-

structed in order to fit the capabilities of emerging HDR display devices, a process10

known as inverse/reverse tonemapping (ITM) [5]. In both cases, the aim is to preserve

the appearance and information content of an image as much as possible while ensur-

ing that it can be displayed on the chosen display device. To achieve that, tonemapping

and inverse tonemapping algorithms typically operate on the luminance of the image

with little to no consideration for the color information present, leading to noticeable15

changes in the color appearance of the image, as shown in Figure 1.

Commonly, luminance-compressed images acquire an over-saturated appearance when

only the luminance channel is processed [6, 7]. Image appearance models, which can

be seen as tone reproduction operators with integrated color appearance management

[2], are designed to reproduce color appearance, but they require calibrated images,20

precise knowledge of the scene in which the image was taken as well as measurements

2



of the viewing environment and the display device itself. This makes these algorithms

very useful in color-critical applications, but their requirement for measurements cou-

pled with high computational complexity due to spatially varying processing limits

their general applicability.25

Some solutions exist for correcting saturation mismatches after tonemapping [7]. This

leads to a computationally efficient correction, although hue and luminance shifts may

be introduced. Moreover, they require manual parameter selection which is strongly

image and tone reproduction operator dependent. Recently, a subjective study was

conducted for defining an automatic model to derive the parameters necessary for such30

corrections, but only allows parameters to be predicted when the tone compression or

expansion function is global [6]. In this paper, we therefore, present an efficient and

effective color post-processing technique with the aim to relieve the user from having

to set parameters, while being applicable to any form of image processing, whether

spatially varying or not. This has the additional benefit that our post-processing can35

be applied even if the input image was manually touched-up, including but not limited

to manual dodging and burning. Our work offers the following contributions and ad-

vantages: (1) Our novel algorithm is based on recent advances in perceptually linear

color-space and saturation computation. (2) Irrespective of the applied image process-

ing technique or tonemapping operator, our algorithm is fully automatic and able to40

recover an accurate reconstruction of image saturation. (3) We take the gamut bound-

ary of the output color space into consideration, leading to lower hue shifts and sig-

nificantly lower luminance distortion. (4) We evaluate our algorithm by means of a

subjective experiment and objective metrics, revealing that our algorithm reproduces

saturation significantly better, as well as significantly reduces luminance distortions45

than the current state-of-the-art.

2. Hue and Saturation Correction

Tonemapping aims to compress the dynamic range of images and prepare them for

display. Typically, this happens through a non-linear transformation of the luminance
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Figure 2: Normalized input versus output luminance for two tonemapping operators. The parameters used

are the one specified in their original work [8] and [1]. Note that each operator changes the relationship

between input and output luminance in different ways leading to different types of saturation and hue shifts.

channel. The aim of tonemapping is then two-fold; images need to be processed so that50

their absolute luminance range is compressed, but pixel relations also need to be altered

to maximize visible detail, therefore changing the contrast in the image. Changes to

contrast and luminance, however, often lead to changes in the appearance of colors in

the image and specifically in their saturation and hue. Furthermore, different tonemap-

ping algorithms alter luminance and contrast in vastly different ways (Figure 2), pre-55

venting a simple correction parameter to work for all cases. Thus, our algorithm is

designed to correct the image’s appearance while minimizing luminance and contrast

modifications without requiring the user to set any parameter [9].

2.1. Algorithm Overview

The input to the algorithm consists of two images given in a linear RGB color space:60

the tone compressed image Mt and the original, unprocessed HDR image Mo as it

contains the original saturation and hue values that we aim to reproduce. In case the in-

put tonemapped image is gamma corrected, an inverse gamma correction is performed

to linearize its RGB values. The goal of our algorithm is to modify Mt such that it

matches Mo in terms of hue and saturation, while preserving luminance values from65

the tonemapped image Mt. Note that matching the appearance of saturation requires
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Figure 3: The steps of our color management algorithm, here illustrated in the context of dynamic range

compression.

active non-linear management of saturation values to account for the Hunt effect [10].

Although HDR images are given in linear units, since in most cases accurate radio-

metric data is not available, their luminance values are inherently inaccurate. As such,

we focus on contrast changes between the two input images and therefore normalize70

both Mt and Mo before converting them to the IPT color space, which has better hue

uniformity than CIE L∗a∗b∗ and HSV color spaces [11]. Recently, a variant of the

IPT space for HDR images, known as hdr − IPT space, has been proposed. In this

new space, the power function in IPT has been replaced with the Michaelis-Menten

function to improve the behavior of the color space for very low and very high lumi-75

nance levels [10]. We decided to not use this color space to avoid using different color

spaces for tonemapped and HDR images.

As we need separate access to lightness, hue and colorfulness, we then convert to a

cylindrical color space akin to CIE L∗C∗h∗. This space is based on IPT and therefore

we refer to it as the ICh space, where I encodes lightness, C represents colorfulness80
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and h is a measure of hue. The lightness channel I is not further processed because

this was the main purpose of the preceding tonemapping operator. The hue in the

tonemapped image ht is subsequently set to the hue ho of the original image, restoring

any hue distortions that may have arisen due to gamut clipping during tonemapping.

The quantity that needs to be matched between the HDR and tonemapped images is85

saturation (s). However, the aforementioned cylindrical color space produces color-

fulness (C). Saturation is defined as colorfulness relative to lightness, i.e. s = C/I .

However, a recent proposal to define saturation as colorfulness relative to the full mag-

nitude of the stimulus, i.e. s = C/
√
C2 + I2 [12], provides more accurate results for

our application.90

After the saturation is adjusted on a per-pixel basis, our adjustment is modulated to

avoid creating out-of-gamut pixels. Finally, the corrected image is converted back to

the RGB color space and gamma corrected as the final step. The workflow of our

algorithm is illustrated in Figure 3 and discussed in detail in the following sections.

2.2. The IPT Color Space95

Accurate color processing often benefits from the use of a perceptually linear and

decorrelated color space. An obvious choice in this case would be the CIE L∗a∗b∗,

as it aims to be perceptually uniform, meaning that the color difference between two

pairs of colors with the same Euclidean distance between them in the CIEL∗a∗b∗ space

will be perceived equally different. Although this is a useful property, images modified100

in the CIE L∗a∗b∗ may acquire hue shifts [11].

To address this particular shortcoming, an alternative color space known as IPT was

proposed, where I encodes lightness information while the P and T channels (stand-

ing for protan and tritan responses) encode red-green and yellow-blue opponent di-

mensions respectively [11]. Like CIE L∗a∗b∗, it is defined as a transform from XY Z105

tristimulus values. The perceptual uniformity offered by CIE L∗a∗b∗ is preserved in

IPT , but additionally changes in colorfulness do not induce hue shifts (see Figure 4),

making it better suited for our purposes. The IPT space forms the foundation for our
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Figure 4: Constant perceived hue lines plotted in the chromatic channels of CIEL∗a∗b∗ (a and b) and IPT

(P and T). Straight lines indicate good hue-uniformity. Note that blue hues acquire significant shifts in the

CIE L∗a∗b∗ color space, as shown by the curvature of the hue lines. Adapted from [13].

algorithm. However, we wish to manipulate perceptual correlates of hue and satura-

tion, and for this reason we convert from IPT space to a cylindrical version of IPT ,110

which we term ICh, as explained next.

2.3. Appearance Correlates

To convert from IPT to a cylindrical color space ICh, we follow the standard pro-

cedure and leave the I channel unchanged while setting hue h and colorfulness C as

described in [9]:

h = tan−1(P/T ) (1)

C =
√
P 2 + T 2 (2)

Saturation s is commonly computed as s(C, I) = C/I . Recently, however, an alterna-

tive formula was proposed that follows human perception more closely [12]:

s(C, I) =
C√

C2 + I2
(3)

Note, however, that to our knowledge application of this formula in ICh is novel; its

development was centered around CIE L∗C∗h∗. The merit of using this formulation is

assessed in Section 3.1.115
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2.4. Saturation Correction

Since saturation for a given pixel depends both mathematically and perceptually on its

lightness, it can be expected that after tonemapping an image, its saturation values will

be changed. Most tonemapping operators modify only luminance and leave chromatic

information unchanged, which inevitably alters the relation between lightness and sat-

uration in the image, therefore leading to an over-saturated appearance. Tonemapping

typically maps luminance values in a non-linear manner. As a result, although the

absolute luminance levels of the tonemapped image are likely to be lower than the

original HDR scene if displayed on a conventional monitor, the relative luminance of

many pixels will be increased compared to their surrounding pixels. According to the

Hunt effect, these pixels will then appear even more saturated, requiring additional cor-

rection. Noting that we have already normalized both tonemapped and HDR images

before converting to ICh, to account for the Hunt effect, we begin by scaling colorful-

ness according to the relative lightness of the original HDR and tonemapped images:

C ′t =
Io
It
Ct (4)

Then, using (3), we compute the ratio r between the saturation of the original and

tonemapped image, albeit that we compute the latter using C ′t, i.e. after accounting for

the Hunt effect:

r =
s(Co, Io)

s(C ′t, It)
(5)

This ratio is then applied to colorfulness C ′t as a second factor to find the colorfulness

appropriate for the tonemapped image:

Cc = r C ′t = r
Io
It
Ct (6)

For convenience, in the following, we will refer to the full adjustment factor as:

r′ = r
Io
It

(7)

Dependent on the used tone curve, the colorfulness of some pixels may increase while

for others it may decrease. This may even happen in the same scene, so that light
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pixels may gain in colorfulness, while dark pixels may lose colorfulness. This is a

desired effect, but it does mean that light pixels may be moved toward and over the120

gamut boundary as a result of applying a scale factor that is larger than 1. To prevent

this, it is possible to readjust the value of r′ prior to applying it to the colorfulness of

the tonemapped image. This is discussed in the following section. Finally, we reset the

hue by copying values from the HDR image (hc = ho). Together with the corrected

colorfulness Cc, it is combined with the lightness channel of the tonemapped image125

Ic = It to produce the final corrected result, which can then be converted back to

RGB and then gamma corrected for display purposes.

It should be noted that in this work we assume that both the input and the output

target encoding —both in terms of color space and non-linearity—is BT.709 [14]. If

a different output encoding is necessary, e.g. BT.2020 [15], which may be the case130

when inverse tonemapping content towards HDR, we propose that the transformation

towards the desired encoding is performed after our processing, using the linear output

of our algorithm.

2.5. Gamut Correction

When pixels in the tonemapped image Mt are near or on the gamut boundary, increases135

in colorfulness may lead to undesirable hue and luminance changes in the resulting
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image due to gamut clipping in the conversion from ICh to RGB. Several gamut

mapping techniques have been proposed, to solve this problem in the past[16]. These

techniques have been mainly developed to overcome the limited mismatch between

color gamuts, i.e., LDR image and display. Only recently techniques dealing with140

HDR content are starting to appear [17]. However, the aim of our gamut correction is

two folds. The first is to perform this operation on the LDR content. The latter is to

have a computationally efficient solution that does not add unacceptable extra overhead

on the color correction algorithm, while maintaining acceptable quality.

To reduce the occurrence of such clipping, we developed a further adjustment to the

colorfulness correction r′. The conversion between RGB and ICh is non-linear, and

as such there is no easy way to determine what the maximum colorfulness is given

a specific lightness level I and hue h. This can be seen in Figure 5 where we have

plotted the vertices of an RGB cube before and after transforming to ICh. Although

there may be analytic or sample-based solutions to describe the corresponding ICh

gamut boundary, or distance metrics in complex volumes could be devised, these are

not computationally efficient and would add a disproportionate cost to the main algo-

rithm. Therefore, we propose a simplified and approximate algorithm to determine

how far a given color is removed from the gamut boundary. Figure 5 shows that the

RGB gamut is by definition cubic, and in our case it is located within the unit volume.

Therefore, we compute the shortest distance of each pixel in the tonemapped image to

the gamut boundary in RGB space:

d = 2 min(Mt, 1−Mt) (8)

d = min(dr,dg,db) (9)

where the factor of 2 normalizes the distance d. The approximation we make is that145

we assume the distance to the gamut boundary in RGB space to correlate with the

distance to the gamut boundary in ICh space. We, therefore, use distance d to directly

adjust the colorfulness scale factor.

We achieve out-of-gamut detection by converting a copy of the tonemapped image

after the hue reset back to RGB and compute d based on that. Wherever hue reset
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has created gamut related problems, we will have a value of d less than 0, meaning

that at least one of the color components have gone out of the [0, 1] range. We now

have a choice as to whether we would accept a hue shift or sub-optimal saturation for

these out-of-gamut pixels. We could reduce colorfulness until these pixels become

representable in the output RGB gamut, thereby minimizing hue shifts. On the other

hand, we could accept these hue shifts and keep our saturation processing as accurate

as possible. Either approach would be viable. However, to demonstrate the utility of

our algorithm, we have chosen for the latter by simply clamping negative values of

d to 0. On the basis of d, we can now adjust our correction factor if it were to move

pixels too close to the gamut boundary, or beyond. Rather than hard clipping, it is often

desirable to gently reduce the processing for pixels near the gamut boundary. We have

found that a straightforward rational function allows us to effect such a gentle roll-off:

d′ =
d

d+ 0.01
(10)

The steepness of the roll-off is controlled by the constant 0.01, a parameter that was

determined empirically. Note that this choice of this parameter is not critical, so that

changes to this parameter value would not unduly affect the results. The contrast ad-

justment then becomes:

Cc =

Ct r
′ r′ ≤ 1

Ct (d′r′ + (1− d′)) r′ > 1

(11)

This function effectively produces a non-linear interpolation between the desired ad-

justment factor and a factor of 1 when near the gamut boundary.150

As mentioned previously, in this work, we consider that the input content is encoded

in the BT.709 gamut, and in this gamut correction step, we aim to preserve it. If the

target output gamut is larger, e.g. BT.2020, to compute the distance in Equation (8), we

first need to transform the image Mt from BT.709 to the larger color space, passing by

XYZ, and according to the transformations described in the respective standards. After155

this conversion, the gamut boundaries will represent the larger gamut, and therefore the

distance d will be adjusted accordingly.
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3. Evaluation

To assess the performance of our algorithm, we compressed the dynamic range of

many challenging scenes with different tonemapping operators. We then processed160

the results with our color correction method and compared our results against both the

automatic and manual versions of Schlick’s and Mantiuk’s algorithms[6, 7]. Since we

assume that the color correction method is applied as a post-process and therefore has

no direct access to the tonemapping algorithm, for Schlick and Mantiuk’s techniques

we estimate the tone curve from the image pair directly so that their parameters can be165

directly estimated.

In the following, we begin by showing in Section 3.1 the merit of several design de-

cisions taken during the development of our algorithm. In Section 3.2 we show side-

by-side comparisons with existing techniques as well as usage scenarios. Then, in

Section 3.3 we assess and compare lightness and hue reproduction, which can be mea-170

sured objectively. This is followed by an evaluation for the case of ITM in Section 3.4.

Finally, the comparative performance of saturation reproduction is assessed with a psy-

chophysical experiment, which is discussed in Section 3.5.

3.1. Evaluation of Design Decisions

In this paper, we argue that the choice of color space is critical to the success of our175

method. An obvious choice for color processing would be CIE L∗a∗b∗. However,

consistent with the literature [11], we found that it has relatively poor behavior, partic-

ularly in blue regions. This can be seen in Figure 6 where we have applied our color

processing in both CIE L∗C∗h∗ (left), derived from CIE L∗a∗b∗, and ICh (right).

Here, we have also applied two different formulations for saturation, the commonly180

used s = C/I and the more recently proposed (Equation 3). We see that in CIE

L∗a∗b∗ with the standard saturation computation the sky takes on a purple tinge, an

effect we have seen in other images as well. This is fixed by using the new saturation

formula, but here the final result is too saturated. Using ICh space no undue color

shifts are present in Figure 6, but we observe that here the standard saturation formula185
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Figure 6: Comparisons between different variants of our algorithm, in particular comparing performance

in CIE L∗C∗h∗ derived from CIE L∗a∗b∗ against ICh, paired with two different saturation formulations,

namely s = C/I and s = C/
√
C2 + I2 (substitute L for I in CIE L∗a∗b∗).

C/I leaves the image somewhat too desaturated. These effects are seen to a greater or

lesser extent in many images. We have therefore chosen to do our processing in ICh

space, using the more recent saturation computation, as explained in Section 2.

3.2. Results and Comparisons

The algorithm was implemented in MATLAB, running on an Apple Macbook Pro with190

an Intel Core 2 Duo processor running at 2.3 GHz. Although our current implementa-

tion is not optimized for performance, typical examples tested at resolutions of around

1 MP were processed in approximately 5 seconds. More than 90% of that time was

spent on color space conversions. The tonemapping operators’ parameter values used

in the evaluation, are the ones specified in their original papers. Our method corrects195

the saturation in the image on a per-pixel basis. This ensures that even extreme changes

in saturation due to tonemapping or any other manual or automatic image processing
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a. Selectively desaturated input b. Our correction

c. Schlick correction d. Mantiuk correction

Figure 7: Typically, artists can use masks to control the contrast, saturation and other parameters locally in

the image. The input image (a) was manually adjusted using a mask to selectively desaturate the logo, and

post-processed with our algorithm (b) as well as Schlick’s (c) and Mantiuk et al.’s [6] (d) corrections.

can be corrected. Figure 7 demonstrates this with an example where the image is se-

lectively desaturated using a mask. Although most of the image is overly saturated, a

region in the shape of the logo is almost achromatic. The mask in this case has only af-200

fected saturation and not the luminance or contrast. Our approach corrects the colors in

the image such that the desaturated logo becomes almost invisible after our correction.

Note that if both the HDR and the tonemapped images are individually normalized, the

tone reproduction process does not universally reduce the image’s contrast. Instead,

some pixels are reduced in level, whereas others are increased. As a result, some pixels205

require a commensurate decrease in saturation, while others need their saturation to

be increased. Figure 8 shows that the effect of our method is that materials can be

correctly reproduced, irrespective of tone reproduction operator. The gold leaf on the

14
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Figure 8: The Memorial image was tonemapped using six different tone reproduction operators. The satu-

ration was then corrected using our method, as well as Schlick’s and Mantiuk’s algorithms with parameter

automation enabled [6]. Our method desaturates darker areas in the image more, following color percep-

tion, while lighter areas are preserved or even enhanced. As a consequence, the gold plating on the wall

(inset) maintains a gold appearance in our results.

wall still appears as gold for instance; an effect that is difficult to reproduce with other

methods that tend to create more washed-out colors.210

Figure 9 demonstrates that existing methods tend to desaturate parts of the image that

are both light and saturated, turning the yellow sign and the shop interior white in the

top images, and the sky gray in the bottom images. This effect is more pronounced

with Li et al.’s operator [1] than with the photographic operator [8].

3.3. Luminance and Hue Differences215

Ideally, saturation correction aimed at tone reproduction should alter the saturation or

colorfulness of the image without affecting the luminance or hues. Specifically, the

hues of the original input image should be preserved throughout the process, while

the luminance and contrast information should be defined by the tonemapping process

applied. To assess whether our algorithm achieves that, we have evaluated our results220

using color difference metrics.
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Figure 9: Comparisons between our new algorithm and Schlick and Mantiuk’s corrections.

Typically, color differences are computed by simultaneously considering both lumi-

nance and chromatic information. In our case, a metric capable of separating lumi-

nance, saturation and hue is necessary as we are only interested in preserving two of

these appearance correlates. Further, we compare hue information relative to the in-225

put HDR image, while luminance information is evaluated relative to the tone mapped

image.

Although, commonly, color difference measurements are performed in the CIE L∗a∗b∗

color space, it is known that CIE L∗a∗b∗ is not hue-linear across all hues [11], making

this space not ideal as a basis for measuring hue differences. The IPT color space

addresses some of the limitations of CIE L∗a∗b∗, but to further optimize the space for

computing color differences, an adjusted I ′P ′T ′ color space was developed by Shen

et al. [18]. This space is scaled and rotated with respect to IPT such that color dif-

ferences are directly comparable with other color difference metrics, while preserving
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hue linearity. It is computed from IPT coordinates as follows:
I ′

P ′

T ′

 =


100.0 0.0 0.0

0.0 144.9 −2.1

0.0 −39.1 85.5



I

P

T

 (12)

In I ′P ′T ′, a cylindrical space is then computed as discussed in Section 2, where light-

ness ∆I ′ and hue ∆h differences can be computed. As hue is defined on a circle, we

compute ∆h for a given pair of hues ht and hc as follows:

∆h = min(|ht − hc|, |min(ht, hc) + 2π −max(ht, hc)|) (13)

Figure 10 shows aggregated results over a dataset of 99 HDR images, drawn from the

HDR photographic survey [3], which were tonemapped twice; once with Li et al.’s

algorithm [1] (right) and once with the photographic tone reproduction operator [8]230

(left). Lightness differences were evaluated against the tonemapped results in each

case, while hue differences were evaluated against the input HDR image, to ensure that

hue was preserved throughout the process. The GC and NGC abbreviations represent

the gamut correction (Section 2.5) and no gamut correction cases, respectively.

We observe that lightness is significantly better reproduced in our method; slightly235

more so when the gamut boundary is taken into account. The performance improve-

ment is particularly evident when the images are tonemapped with Li et al.’s method [1],

a method known to require significant saturation post-processing. The photographic

operator1[8] on average requires less severe saturation adjustment. Hue reproduction

is also improved relative to the state-of-the-art, although less dramatically so. In the240

dataset of 99 images used in the experiment, we may find strong cases where the lumi-

nance shift of the state-of-the-art is well above the JND threshold of 2.3 [19], which is

eliminated by our algorithm.

1In this paper we use the global version of this operator in all cases.
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Figure 10: Left: Average ∆I′ and ∆h values between the tonemapped input and the corrected results

using [7], our proposed approach, and [6] for 99 images taken from the HDR Photographic Survey [3].

Images were tonemapped with the photographic operator [8] and with Li et al.’s algorithm [1]. Error

bars indicate a 95% confidence interval. The GC and NGC abbreviations represent the gamut correction

(Section 2.5) and no gamut correction cases, respectively.

3.4. Inverse Tonemapping

Our analysis so far has focused on the tone compression case. Nevertheless, the grow-245

ing availability of commercial HDR displays has increased the need for color-managed

solutions for expanding the dynamic range of existing LDR content. Recently, Bist

et al. [20] study has shown that for gamma-expansion based ITM operators the ideal

saturation parameter setting s is 1.25 when using the Mantiuk’s luminance preserv-

ing formula. Our method is equally suitable for ITM applications [21]. We present a250

more holistic solution that irrespective of the ITM operator is fully automatic and able

to recover an accurate reconstruction of image saturation. At the same time, we take

the gamut boundary of the output color space into consideration, leading to lower hue

shifts and significantly lower luminance distortion. ITM operators tend to create under-

saturated results for the same reason that tonemapping operators tend to saturate too255

much. Figures 11 and 12 show that our algorithm is able to restore saturation in this

case. Note that for visualization purposes each result was subsequently tonemapped

with the photographic operator [8] .

In addition to visual comparisons, we evaluated the performance of the different cor-
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a. Inverse tonemapped HDR b. ICh

c. Schlick’s algorithm d. Mantiuk’s algorithm

e. Detail zoomed in

HDR ICh Schlick Mantiuk

Figure 11: An LDR image was passed through an IITM operator [21] (a) and then processed with our

algorithm (b) and Schlick’s (c) and Mantiuk et al.’s (d) algorithm.

rection methods for several ITM methods by considering hue differences against the260

input LDR image and lightness differences against the ITM results. To provide com-

parable results to the TMO evaluation shown in Figure 10, LDR ‘best exposures’ were

extracted from the 99 images of the HDR photographic survey [3], and were inverse

tonemapped with the methods of Akyuz et al. [22], Kovaleski et al. [23], and Masia et

al. [24]. Aggregated results are given in Figure 13 and example visualizations of dif-265

ference maps are shown in Figure 14. The second row shows the lightness differences,

while the last row shows the hue differences.

3.5. Psychophysical Evaluation

While luminance and hue performance can be assessed with suitably chosen color dif-

ference metrics, the aim of saturation correction algorithms is to alter saturation taking270

into account psychophysical phenomena. We have therefore chosen to compare and

assess the performance of our algorithm relative to existing algorithm by means of a
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a. HDR from inverse tonemapping c. Mantiuk post-processingb. ICh post-processing d. Schlick post-processing

Figure 12: Another example of applying our method to an ITM operator [21] (a) and then processed with

our algorithm (b) and Schlick’s (c) and Mantiuk et al.’s (d) algorithm.

set of psychophysical experiments.

3.5.1. Experimental design

To assess the saturation performance, we designed a 2-alternative forced-choice ex-275

periment (2AFC) whereby two identically tonemapped images are post-processed with

different saturation correction algorithms. These two images are shown side-by-side

on the display, underneath the HDR input image as shown in the experiment set-up of

Figure 16 To this end, we employed a SIM2 HDR47E S 4K HDR display device which

20



Mantiuk Schlick Ours (GC) Ours (NGC)

 ΔI’

 Δh

Mantiuk Schlick Ours (GC) Ours (NGC)Mantiuk Schlick Ours (GC) Ours (NGC)
0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

a. Akyuz 2007 b. Kovaleski 2014 c. Masia 2017

Figure 13: Average ∆I′ and ∆h values between inverse tone mapped images and corrected results using

[7], our proposed approach and [6] for 99 images. Our method was tested both with and without the gamut

clipping step. Error bars indicate a 95% confidence interval.
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Figure 14: Example results with different correction methods for ITM as well as corresponding lightness

(second row) and hue differences (last row). ITM results for this example were obtained using the method of

Akyuz et al. [22], and are shown after tonemapping for visualization.

can emit up to 4000 cd/m2. To allow prolonged stable and calibrated use, we used a280

peak luminance of no more than 2500 cd/m2. The background of the stimuli was set

to 18 cd/m2 while the peak luminance for the tonemapped images was 100 cd/m2.

The left and right 7 cm of the display were left unused as we have found luminance

reproduction to be less accurate in those regions. The display was driven by an Ap-

ple Macbook Pro running Matlab using the Psychophysics toolbox extensions [25] and285

employing a custom OpenGL shader for driving the display in calibrated HDR mode.

A set of 8 HDR images (stimuli) were drawn from the HDR Photographic Survey [3]

shown in Figure 17. These HDR images were tonemapped with the global version of
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Figure 15: Results from our experiment. The horizontal line indicates the difference with the longest bar in

each group at which significance occurs.

the photographic operator [8] and a spatially varying operator [1]. Subsequently, the

images were post-processed with different saturation correction algorithms, dependent290

on the experiment (see below). A stimulus then consists of the HDR image, below

which two differently post-processed images are shown. Tone mapping operators were

varied between stimuli, but not within stimuli. In each trial, the participant was asked

to select the image which matched saturation best to the HDR image. Before start-

ing an experiment, participants were first shown written instructions, followed by a295

set of training screens consisting of patches with varying hues, lightness values and

saturations. The purpose of these training screens, is to familiarize participants with

the difference between saturation and other appearance phenomena. General feedback

was solicited after the experiment, which lasted on average 20 minutes. The main

experiments were preceded by two pilot studies to help configure the main experiment.300

3.5.2. Pilot Studies

In the first pilot study, our algorithm with and without gamut correction is evaluated to

determine which of these two versions performed best in terms of saturation reproduc-

tion. We found that both methods being selected virtually the same number of times.
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a. Setup (lights on) b. Setup (lights off)

c. Training d. Stimulus

Figure 16: Our experimental design: a. shown with room lights on for visualization purposes, b. without

room lights demonstrating the conditions under which the experiment was run, c. one of the training screen

and d. an example stimulus.

However, as the gamut boundary solution, for specific cases, may provide better results305

we have chosen to include this variant in our experiment. In the second pilot study, the

optimal parameters values for Schlick and Mantiuk are determined. In this study, a se-

quence of images with different parameters against the HDR image shown on the HDR

display, were compared. The averaged values of the parameters are given in Table 1. It

is interesting to note the wide range of values and their operator and image dependence,310

motivating the need for automation. These values were used to create stimuli for the

experiment presented below.

3.5.3. Main experiment

The task for the main experiment is to match the impression of saturation between

tonemapped color processed images and their HDR originals. Therefore, it is not a315

preference rating, but a match to sample task. Stimuli were created to compare our
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WestBranchAusable2

ElCapitan

CadesCove

MasonLake1

LuxoDoubleChecker

GoldenGate1

PaulBunyan

McKeesPub

Figure 17: Images selected for our sebjective experiments, for visualization shown tonemapped with the

photographic operator and post-processed with our algorithm. These images represent indoor, outdoor,

landscape, photographs examples with a large variety of dynamic range.

algorithm (which includes gamut boundary correction) with the automated version of

Schlick and Mantiuk et al.’s algorithm using Li et al.’s [1] and Reinhard et al.’s [8]

tone reproduction operators, leading to a total of 48 trials per participant to account

for all paired comparisons. There were 18 participants in this experiment, who were320

between 23 and 53 years old, and all had normal or corrected-to-normal vision as well

as normal color vision. We used a multiple comparison range test to determine if

any pairwise difference was significant. This procedure, equivalent to Tukey’s method

used with ANOVA [26], is based on the range of the scores obtained by the color

correction methods under examination. There is the possibility that circular triads can325

occur. This can be measured by calculating Kendall’s coefficient of consistency ξ.

We have calculated the ξ values per image and per tonemapping operator as shown in

Table 2 . For the photographic operator we find an average coefficient of consistency

of ξ = 0.78 ± 0.1 (mean and standard deviation). For Li et al.’s operator we find ξ =

0.85±0.08. Thus, we have obtained overall high consistency, supporting the following330

findings. Significance tests were calculated on the differences between the scores of

pairs of color correction methods [26]. These differences are considered significant if

24



Image [Photographic 2002] [Li 2005]

Schlick Mantiuk Schlick Mantiuk

BarHarborSunrise 0.750 0.725 0.650 0.700

BloomingGorse2 0.875 0.900 0.800 0.900

LetchworthTeaTable1 0.675 0.725 0.725 0.700

LuxoDoubleChecker 0.775 0.825 0.750 0.775

MasonLake1 0.900 0.950 0.950 0.950

RedwoodSunset 0.650 0.700 0.650 0.625

SmokyTunnel 0.900 0.950 0.900 0.950

Table 1: Manually selected values for parameter p in Schlick and Mantiuk’s algorithms, per image and

TMO.

Images [8] [1]

ξ u ξ u

1 0.88889 -0.90741 0.88889 -0.42593

2 0.77778 -0.57407 0.77778 -0.27778

3 1 -0.48148 0.77778 -0.48148

4 1 -0.81481 0.88889 -0.81481

5 0.77778 -0.77778 1 -0.68519

6 0.66667 -0.48148 0.88889 -0.40741

7 0.66667 -0.74074 0.66667 -0.83333

8 0.88889 -0.7037 0.88889 -0.37037

Table 2: Coefficients of consistency ξ and agreement u per image and per tonemapping operator.

they are greater than a critical valueRwhich is computed as in [9]. Figure 15 shows the

overall results of our experiment. When we assessed the overall performance, for each

tonemapping operator, over all images, we found statistical significance for Li et al.’s335

operator at significance level α = 0.001. The critical value is R = 53, given u = 144

for 18 participants × 8 images. In this case our method was selected significantly

more often. This is visualized in Figure 15 where we have drawn a horizontal line at

a height 53 below the maximum score, noting that the bars for Schlick and Mantiuk’s

methods do not cross this line. For the photographic operator, we found no statistically340

significant differences. We have observed that Li et al.’s operator on average requires

stronger saturation correction than the photographic operator. It is therefore interesting
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to see that especially in the case of Li et al.’s operator our saturation correction method

performs well. Moreover, for the photographic operator our algorithm performs on par

with the current state-of-the-art. We also computed scores for the two tonemapping345

operators combined. Here R = 75 as u = 288 (18 participants × 8 images × 2

tonemapping operators). Overall, our method was selected 364 times (289 times for

Schlick’s algorithm and 211 times for Mantiuk et al.’s method). This result, also shown

in Figure 15, is therefore highly statistically significant (α = 0.001). In essence, this

means that our algorithm matches the impression of saturation between tonemapped,350

color corrected images and their HDR originals measurably better than the current

state-of-the-art.

4. Conclusions

Tonemapping tends to be carried out on a luminance channel while leaving chromatic-

ities unaffected. As the appearance of saturation depends on relative luminance levels,355

ideally saturation should co-vary with luminance when applying tonemapping opera-

tors. Nonetheless, it is possible to post-correct saturation mismatches given the input

and the output images of a tonemapping algorithm. Based on recent insights into the

design of perceptually linear color spaces as well as a recent formulation of saturation,

our algorithm provides an effective solution for color post-processing of tonemapping360

operators as well as manually processed images. Our algorithm is shown to better pre-

serve both lightness and hue information relative to the majority of different tonemap-

ping and inverse tonemapping operators. As our solution is agnostic to the operator

used, it can correct saturation after both local and global tonemapping, which is not

currently possible with methods relying on estimating the slope of the tone curve. Al-365

though we do not explicitly address video content in this paper, our method can be

further extended to handle video content in a temporally coherent manner, assuming

that the tonemapping approach is temporally stable. This will be part of future work.
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[12] E. Lübbe, Colours in the Mind - Colour Systems in Reality: A formula for colour

saturation, Books on Demand GmbH, 2008.400

[13] Y. Xue, Uniform color spaces based on CIECAM02 and IPT color difference

equations, Ph.D. thesis, Rochester Institute of Technology (2008).

[14] I.-R. B. Recommendation, 709, Basic Parameter Values for the HDTV Standard

for the Studio and for International Programme Exchange, now ITU-R BT 709.

[15] M. Sugawara, S.-Y. Choi, D. Wood, Ultra-high-definition television (rec. itu-r bt.405

2020): A generational leap in the evolution of television [standards in a nutshell],

IEEE Signal Processing Magazine 31 (3) (2014) 170–174.

[16] J. Morovic, Color Gamut Mapping, 1st Edition, The Wiley-IS&T Series in Imag-

ing Science and Technology, 2008.
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