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Take home messages

1. Protein sub-cellular localisation: available technologies and
opportunities.

2. Reliance on computational biology to acquire reliable
biological knowledge.
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Image from Wikipedia http://en.wikipedia.org/wiki/Cell_(biology).

Spatial proteomics is the systematic study of protein localisations.
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Spatial proteomics - Why?

Localisation is function

» The cellular sub-division allows cells to establish a range of
distinct micro-environments, each favouring different
biochemical reactions and interactions and, therefore, allowing
each compartment to fulfil a particular functional role.

» Localisation and sequestration of proteins within sub-cellular
niches is a fundamental mechanism for the post-translational
regulation of protein function.

Re-localisation in

» Differentiation stem cells.

» Activation of biological processes.

Examples later.



Spatial proteomics - Why?

Mis-localisation
Disruption of the targeting/trafficking process alters proper
sub-cellular localisation, which in turn perturb the cellular
functions of the proteins.
» Abnormal protein localisation leading to the loss of
functional effects in diseases (Laurila and Vihinen, 2009).
» Disruption of the nuclear/cytoplasmic transport (nuclear
pores) have been detected in many types of carcinoma cells
(Kau et al., 2004).
» Sub-cellular localisation of MC4R with ADCY3 at neuronal
primary cilia underlies a common pathway for genetic
predisposition to obesity (Siljee et al., 2018).



Spatial proteomics - How, experimentally
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Figure : Organelle proteomics approaches (Gatto et al., 2010)



Fusion proteins and immunofluorescence
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Figure : Targeted protein localisation. Example of discrepancies between
IF and FPs as well as between FP tagging at the N and C termini
(Stadler et al., 2013).



Spatial proteomics - How, experimentally
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Figure : Organelle proteomics approaches (Gatto et al., 2010).

Gradient approaches: Dunkley et al. (2006), Foster et al. (2006),
based on works by de Duve, Claude and Palade.

Explorative/discovery approaches, steady-state global
localisation maps.
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Quantitation data and organelle markers
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Data analysis

v

Visualisation (cluster, unsupervised learning)

v

Classification (supervised learning)

v

Novelty detection (semi-supervised learning)

v

Data integration (transfer learning)

To uncover and understand biology



Visualisation
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Figure : From Gatto et al. (2010), Arabidopsis thaliana data from
Dunkley et al. (2006)



Supervised Machine Learning

Organelle markers Classifcation (SVM)
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Figure : Support vector machines classifier (after 5% FDR classification
cutoff) on the embryonic stem cell data from Christoforou et al. (2016).



Importance of annotation
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Semi-supervised learning: novelty detection
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Figure : Left: Original Drosophila data from Tan et al. (2009). Right:
After semi-supervised learning and classification, Breckels et al. (2013).



Improving on LOPIT
Improving is obtaining better sub-cellular resolution to increase
the number of protein that can be confidently assigned to a
sub-cellular niche = biological discoveries.
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Figure : E14TG2a embryonic stem cells: old (left, published in Breckels
et al. (2013)) vs. new, better resolved (right) experiments (Christoforou
et al. (2016)).



Improving on LOPIT

LOPIT
Dunkley et al. (2006)
Gatto et al. (2014a)

Computational:
transfer learning
Breckels et al. (2016a)

Experimental:
hyperLOPIT
Christoforou et al. (2016)
Mulvey et al. (2017)
Breckels et al. (2016b)

Biological
discoveries




Experimental advances: hyperLOPIT Christoforou et al.
(2016)

Extacton o cylosokenihed faction

Figure : From Mulvey et al. (2017) Using hyperLOPIT to perform
high-resolution mapping of the spatial proteome: (1) organelle separation
and enrichment by density gradient ultracentrifugation, (2)
chromatin and cytosol enrichment fractions, and (3) accurate
quantification using synchronous precursor selection (SPS)-MS? for
TMT 11-plex quantification.
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Figure : E14TG2a LOPIT on 8 fractions (using iTRAQ 8-plex) and 1109
proteins vs. hyperLOPIT on 10 fractions (using TMT 11-plex) and
SPS-MS3 for 5032 proteins.



Computational advances: Transfer learning

What about using addition data, such as annotations from the
Gene Ontology (GO), sequence features (pseudo aminoacid
composition), signal peptide, trans-membrane domains (length,
number, ...), images (IF, FP), interaction data, prediction software,

» From a user perspective: " free/cheap” vs. expensive and
time-consuming experiments.

v

Abundant (all proteins, 100s of features) vs. (experimentally)
limited /targeted (1000s of proteins, 6 — 20 of features)

For localisation in system at hand: low vs. high quality

v

v

Static vs. dynamic



Transfer learning

Support/complement the primary target domain (experimental
data) with auxiliary data (annotation, imaging, PPI, ...) features
without compromising the integrity of our primary data.



PRIMARY EXPERIMENTAL DATA

Cell lysis
o o LY oo )
= - . N
mC ‘emﬂ.o

Pl
o

Fractionation/centrifugation

e fitochdndriony T T 1 n
0 cio {'#{ dee c'nr [
U

Quantitation/identification
by mass spectrometry

*Je-q- Mitochondrion

Visualisation

20 2 4

Database query

Extract GO CC terms

Porasis)

AUXILIARY DRY DATA



Breckels et al. (2016a) Learning from Heterogeneous Data
Sources: An Application in Spatial Proteomics.
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Application of transfer learning on the o/ld E14TG2a embryonic
stem cells (left, Breckels et al. (2013)) and GO cellular
compartment, and validated using the new, better resolved,
hyperLOPIT data (right, Christoforou et al. (2016)).


http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004920
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004920

Transfer learning results
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Figure : From Breckels et al. (2016a) Learning from heterogeneous data
sources: an application in spatial proteomics.



Biological discoveries

» Multi-localisation

» Trans-localisation

Dependent on good sub-cellular resolution and adequate
computational tools.



Embracing uncertainty

A Bayesian Mixture Modelling Approach For Spatial
Proteomics

We propose a Bayesian generative classifier based on Gaussian
mixture models to assign proteins probabilistically to sub-cellular
niches, thus proteins have a probability distribution over
sub-cellular locations.

This methodology allows proteome-wide uncertainty
quantification, thus adding a further layer to the analysis of
spatial proteomics.



Embracing uncertainty
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Figure : V-ATPase subunit d1 (P51683) with uncertain localisation
between the endosome and lysosome.
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PC2 (22.34%)

Dual-localisation Proteins may be present simultaneously in
several organelles (e.g. trafficking). Simulation on A. thaliana data
from Dunkley et al. (2006) (Gatto et al., 2014b) (left). Example
from embryonic stem cells (Christoforou et al., 2016) (right).

PC1 (64.36%)



PC2 (22.34%)

Dual-localisation Proteins may be present simultaneously in
several organelles (e.g. trafficking). Simulation on A. thaliana data
from Dunkley et al. (2006) (Gatto et al., 2014b) (left). Example
from embryonic stem cells (Christoforou et al., 2016 ) (right).

24h N2B27

From Betschinger et al. (2013)

Mouse ESC (E14TG2a) in serum LIF
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Spatial dynamics

Trans-localisation event during monocyte to macrophage
differentiation

Investigate the effect of lipopolysaccharides (LPS)-mediated
inflammatory response in human monocytic cells (THP-1)

Data

» Triplicate temporal profiling (0, 2, 4, 6, 12, 24 hours).

» Triplicate spatial profiling (0 vs 12 hours) - early trafficking,
before actual morphological differentiation at 24h.

Work lead by Dr Claire Mulvey at the Cambridge Centre for
Proteomics.
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Figure : Spatial maps of unstimulated and LPS-treated cells (combined

triplicates).
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Unstimulated LPS 12hrs

o
= Cytosol
Endoplasmic Retulum
Golg Apparas
o | tysesome
S o Mtochondia
o Nudeus
Peroxiorme
w - pasma mem
unkoown if
R g
g g © °w ¥ & sTAs STATE % o
s > § ce'% 8,
5 I N x ® 2a%°
[ g . %‘&%?5*?
N ~ STAT2 o O
g >0 s _ : . " .
e o S oo
L 1) A ) o - it
< . o0 5 8f, Sogs® » %o '
- . #’ & ® o & h 8
[ e $ S ®0 3
: o | .
i
T T T T T T T T T T T
-10 -5 0 5 10 -15 -10 -5 0 5 10
PC1 (36.64%) PC1 (37.4%)

Figure : Relocation of Signal transducer and activator of transcription 6
(STAT®6) from the cytosol to the Nucleus, activating anti-bacterial and
anti-viral-like response. Validated by microscopy and see also Chen

et al. (2011).



Computational infrastructure

Reliance on computational biology to acquire
reliable biological knowledge.



Beyond the figures!

» Software: infrastructure (MSnbase, Gatto and Lilley (2012)),
dedicated machine learning (pRoloc, Gatto et al. (2014b))
interactive visualisation? (pRolocGUI, Breckels et al.
(2017)) and data (pRolocdata, Gatto et al. (2014b)) for
spatial proteomics.

! .. which are all reproducible, by the way.
nttps://lgatto.shinyapps.io/christoforou2015/

3between and within domains/software


http://bioconductor.org/packages/MSnbase
http://bioconductor.org/packages/pRoloc
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Beyond the figures!

» Software: infrastructure (MSnbase, Gatto and Lilley (2012)),
dedicated machine learning (pRoloc, Gatto et al. (2014b)),
interactive visualisation? (pRolocGUI, Breckels et al.
(2017)) and data (pRolocdata, Gatto et al. (2014b)) for
spatial proteomics.

» The Bioconductor (Huber et al., 2015) ecosystem for high
throughput biology data analysis and comprehension: open
source, and coordinated and collaborative3 open
development, enabling reproducible research, enables
understanding of the data (not a black box) and drive
scientific innovation.

! .. which are all reproducible, by the way.
nttps://lgatto.shinyapps.io/christoforou2015/

3between and within domains/software


http://bioconductor.org/packages/MSnbase
http://bioconductor.org/packages/pRoloc
http://bioconductor.org/packages/pRolocGUI
http://bioconductor.org/packages/pRolocdata
http://bioconductor.org/
https://lgatto.shinyapps.io/christoforou2015/

Conclusions

1. Protein sub-cellular localisation: technologies (hyperLOPIT)
and opportunities (sub-cellular maps, multi- and trans-
localisation).

Unstimulated LPS 12hrs

PC2 (20.7%)

PC1(36.64%) PC1 (37.4%)

2. Reliance on computational biology and dedicated software to
interpret data and acquire biological knowledge.

> library("pRoloc")
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Supplementary slides: Computational infrastructure



Figure : Collaboration between packages: Dependency graph
containing 41 MS and proteomics-tagged packages (out of 100+) and
their dependencies.
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Figure : Collaboration within packages: Contributions to the MSnbase
package (1220 downloads from unique IP addresses in January 2018)
since its creation, the last one leading to common
proteomics/metabolomics infrastructure. More details:
https://lgatto.github.io/msnbase-contribs/
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Supplementary slides: tranfer learning



Application to PPI/Protein complexes
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Figure : Data on proteasome complexes from Fabre et al. Mol Syst Biol
(2015), DOI: 10.15252/msb. 20145497
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Transfer learnig, based on Wu and Dietterich (2004):
Class-weighted kNN

V(c); = 0" nf + (1 — 6%)nf -

Linear programming SVM

m
f(x,v;ap,ap, b) = Zy, [afKP(x,,x) + o KA(v;,v)| + b
I=1
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Figure : From Breckels et al. (2016a) Learning from heterogeneous data
sources: an application in spatial proteomics.
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