Journal article Open Access

The rise of deep learning in drug discovery

Hongming, Chen; Engkvist, Ola; Wang, Yinhai; Olivecrona, Marcus; Blaschke, Thomas


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <controlfield tag="005">20190409133416.0</controlfield>
  <controlfield tag="001">1175821</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Hit Discovery, Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca R&amp;D Gothenburg, Mölndal 43183, Sweden</subfield>
    <subfield code="a">Engkvist, Ola</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Quantitative Biology, Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Unit 310, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK</subfield>
    <subfield code="a">Wang, Yinhai</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Hit Discovery, Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca R&amp;D Gothenburg, Mölndal 43183, Sweden</subfield>
    <subfield code="a">Olivecrona, Marcus</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Hit Discovery, Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca R&amp;D Gothenburg, Mölndal 43183, Sweden</subfield>
    <subfield code="a">Blaschke, Thomas</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1465219</subfield>
    <subfield code="z">md5:6e4bf998d36756268fdf527038d00944</subfield>
    <subfield code="u">https://zenodo.org/record/1175821/files/DDT_DeepLearning_S1359644617303598-main.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-01-31</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-bigchem</subfield>
    <subfield code="o">oai:zenodo.org:1175821</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Hit Discovery, Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca R&amp;D Gothenburg, Mölndal 43183, Sweden</subfield>
    <subfield code="a">Hongming, Chen</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">The rise of deep learning in drug discovery</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-bigchem</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">676434</subfield>
    <subfield code="a">Big Data in Chemistry</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Over the past decade, deep learning has achieved remarkable success in various artificial intelligence research areas. Evolved from the previous research on artificial neural networks, this technology has shown superior performance to other machine learning algorithms in areas such as image and voice recognition, natural language processing, among others. The first wave of applications of deep learning in pharmaceutical research has emerged in recent years, and its utility has gone beyond bioactivity predictions and has shown promise in addressing diverse problems in drug discovery. Examples will be discussed covering bioactivity prediction, &lt;em&gt;de novo&lt;/em&gt; molecular design, synthesis prediction and biological image analysis.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1016/j.drudis.2018.01.039</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
207
199
views
downloads
Views 207
Downloads 199
Data volume 291.6 MB
Unique views 187
Unique downloads 181

Share

Cite as