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H I G H L I G H T S

� Population balance, metabolic and
compartment models are coupled.

� The disequilibrium between substrate
uptake and utilization rate is intro-
duced.

� Simulations at lab and large scales com-
pare favorably to E. coli culture data.

� Mixing limitation induces substrate gra-
dients affecting metabolism.

� Through scale-up, yield loss and by-
product formation are predicted.
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a b s t r a c t

A generic model for the description of biological population dynamics in industrial bioreactors is
detailed. Hydrodynamics, mass transfer between the cell and the surrounding fluid, population
heterogeneity, metabolism and biological adaptation have to be considered with equal interest and, if
possible, simultaneously. This model couples a hydrodynamic model, a population balance model for the
growth rate adaptation and a metabolic model predicting the reaction rates depending on the state of
the individuals. This approach dissociates the growth rate from local concentrations leading to a good
understanding of the effects of a changing environment on a microbial population. Our model is applied
to Escherichia coli for which experimental data exist in the literature for batch and fed-batch cultures.
The considered strain is known for producing acetate when exposed to heterogeneities. When
simulating a large bioreactor using a compartment model approach for hydrodynamics, our coupled
model could predict that, under certain conditions, acetate is simultaneously produced and consumed in
different areas of the reactor.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The modeling of intensified bioreactors is a current challenge for
both the academic and industrial communities. This is principally due
to the complexity of such processes that combine mixing, transfer and
reaction over a very large range of time and length scales. Compared

to other chemical processes, the case of bioprocesses is even more
complex because of the dynamic response of biosystems (Enfors et al.,
2001). The chemical composition of the liquid phase constraints the
cell potential, the biological uptakes modify the concentration fields
and microorganisms adapt to the concentration changes experienced
along their trajectories. Aiming at higher productivities always pushes
the bioreactor towards a more severe competition between mixing
and substrate uptake (Linkès et al., 2014). The main consequence is
the formation of large scale concentration gradients which in turn
expose cells to fluctuating concentration signals further triggering cell
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adaptation and metabolic dysfunctioning. It has been shown that
periodic exposure to excessive substrate concentration induces some
modifications of the cell metabolism and leads to: (i) the over
assimilation of substrates, (ii) the formation of by-products, and (iii)
a decrease in the overall reactor performance. As a result, the
modeling and simulation of industrial bioreactors leads to a strong
two-way coupling issue illustrated in Fig. 1. Indeed, in biological
reactors, the reaction rates co-evolve with concentration fields due to
a permanent adaptation of the physiological state of cells.

Comparing the characteristic times of the various processes
involved is of great help to identify the potential issues. In a previous
work, mixing, substrate uptake and biological adaptation times were
considered (Morchain et al., 2014). An important result concerns the
concept of local equilibrium between the biophase and the liquid
phase. A cell may adapt to any change in its environment (Ferenci,
1996, 1999) through a large variety of response systems having
different characteristic times (Wick et al., 2001, 2002; Franchini and
Egli, 2006; Ryall et al., 2012). As an illustration, growth rate
adaptation is a slow process whereas the change of biovolume due
to an osmotic shock is very fast. In between, the characteristic time of
substrate uptake regulation is in the range of a few seconds. In most,
if not all, studies coupling hydrodynamics and bioreactions, it is
assumed that the microorganisms are at an equilibrium with their
environment: the reaction rates are calculated from the local con-
centrations in the liquid phase via a kinetic (Altintas et al., 2006;
Peskov et al., 2012) or a metabolic model (Xu et al., 1999; Meadows
et al., 2010; Matsuoka and Shimizu, 2013). The consequence is that
the actual history of cells is not considered: all cells are supposed to
behave as if they were adapted to that local environment. In other
words, instantaneous adaptation of the cell functioning is postulated.
In order to account for the cell diversity and the ability to be out of
equilibrium, the outgoing approach is to consider population balance
modeling. Cells are segregated according to one or more internal
properties. They are presumably different from one another. The
vector of internal properties can be used to define the behavior of
any cell in terms of reaction rates. This approach is very powerful to
address the issues related to bioreactor dynamics. Unfortunately, cell
ensembles (Henson et al., 2002; Mantzaris, 2005, 2006, 2007) and
class methods (Lencastre Fernandes et al., 2012) are not easy to
implement in the framework of Computational Fluid Dynamics
softwares and would lead to prohibitively large computational times
(Lapin et al., 2006).

Nevertheless, hydrodynamics, mass transfer between the cell and
the surrounding fluid, population heterogeneity, metabolism and
biological adaptation have to be considered with equal interest and,
if possible, simultaneously. One possibility to combine all these asp-
ects into a tractable model is to reduce the size of the problem thro-
ugh the use of a simplified hydrodynamic model named compart-
ment approach (Vrábel et al., 1999, 2000; Lencastre Fernandes et al.,
2013). Bezzo et al. (2003), Moullec et al. (2010) and Delafosse et al.

(2014) have proposed different techniques to transpose the 3D-CFD
results into a reduced compartment model.

In this paper, we propose to combine a compartment model
approach for the hydrodynamics, a population balance model for
the population dynamics and a metabolic model for the description
of bioreactions. The problem formulation is closed by setting the
mass transfer law between cells and the liquid phase. The first part
of the paper deals with the model presentation with a minimum
details since most aspects have already been published elsewhere
(Morchain and Fonade, 2009; Morchain et al., 2013, 2014). Then the
metabolic part of the model (adapted from Xu et al., 1999) is
validated against experimental results obtained in a small scale
(15 L) batch cultivation of Escherichia coli. In the third part the whole
model combining the aforementioned aspects is compared to some
experimental results from a 20 m3 fed-batch cultivation of the same
strain (Xu et al., 1999a; Vrábel et al., 2001). In that case, we will rely
upon the reactor compartimentation proposed by the authors. A
significant improvement of the predictive capacities is obtained with
our two-way coupled approach, without parameter adjustment
between the two scales. Namely, the occurrence of a disequilibrium
between the cell and the environment allow the formation of large
amount of by-products when assimilation rates exceed the internal
utilization rates for growth and energy production. On the opposite,
by-products are uptaken and used as secondary substrate in zones
where the main substrate is depleted. Owing to the population
balance approach the threshold between substrate excess and
substrate limiting conditions is relative to the physiological state of
each microorganism. The actual behavior of each subgroup of cells
results from the disequilibrium between its own potential and that
offered by the local environment.

2. Materials and methods

2.1. Hydrodynamic model

The principle of the Compartment Model Approach (CMA) is
briefly recalled hereafter. More details can be found in the original
papers of Hristov et al. (2004) and Zahradník et al. (2001). In such a
model, the reactor's volume is split into N sub-volumes, referred as
“compartments” and considered as perfectly homogeneous. We then
need to define a “circulation map” representing the flow pattern cir-
culating between those compartments. This circulation map may be
deduced from CFD simulations (Delafosse et al., 2010, 2014) or exp-
erimental observations (Vrábel et al., 1999).

To mathematically implement such a model, we define a matrix
of volume flow rates, M f, which is a N-by-N matrix such as the
Mf

m;n entry of this matrix is the value of the flow, expressed in
m3:h�1, going from the m-th compartment to the n-th one with m
and nAf1;…;Ng.

Let Cin be the mass concentration of any species, referred as i, in
the compartment nAf1;…;Ng. Then, the mass conservation equa-
tion for this species in the n-th compartment is given in the foll-
owing equation:

∂Cn
i

∂t
¼ RiþTiþ ∑

N

m ¼ 1
ðMf

m;nC
m
i Þ�Cn

i ∑
N

m ¼ 1
ðMf

n;mÞ ð1Þ

The term Ti is a gas–liquid transfer rate and Ri an overall
reaction rate, both expressed in gi L

�1 h�1. The calculation pro-
cedure for the bioreaction rates will be detailed in following parts
through a population balance model and a metabolic model.

The mass balances, for each species and over each compartment,
lead to a set of Ordinary Differential Equations. The ODEs sets were
solved using a program written with MATLABs 7.9 (R2009b) using
the ODE solver ode23with relative and absolute error tolerances set
respectively to 10�3 and 10�6.

Fig. 1. Illustration of (a) the one-way coupling (as in chemical reactors) and (b) the
two-way coupling in biochemical reactors: concentration gradients impact the cell
state and induce biological heterogeneity.
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2.2. Population balance

The population balance model, detailed in previous papers
(Morchain et al., 2013, 2014), discriminates individuals depending
on their growth capabilities represented by a biological growth rate
μ. The application of the general formulation of a Population Balance
Equation (PBE) proposed by Ramkrishna (2000), adapted to our case
in a homogeneous volume, is given by the following equation:

∂Xðμ; tÞ
∂t

¼ � ∂
∂μ

ðXðμ; tÞζÞþhðμ; tÞ ð2Þ

In this formulation, ζ represents the rate of variation of the internal
variable μ and h is the rate of production of cell with a given value of μ.

We consider that the cell division will lead to the formation of
daughter cells which inherit of their mother's growth rate. Under
that assumption, the PBE given in Eq. (2) becomes

∂Xðμ; tÞ
∂t

¼ � ∂
∂μ

ðXðμ; tÞζðμÞÞþμXðμ; tÞ ð3Þ

The first term on the right hand side of Eq. (3) is the net flux of
biomass moving in μ-space. ζ represents the velocity in that space.

The model actually distinguishes an upward velocity, ζu com-
puted using a time constant Tu characterizing the upward adapta-
tion, and a downward velocity ζd computed with a similar time
constant Td.

ζuðμÞ � Tu�1þμ
� �

μn�μ
� � ð4Þ

ζdðμÞ � Td�1þμ
� �

μn�μ
� � ð5Þ

This formulation implies that the population will tend to reach
a balanced growth rate μn representing the optimal growth rate
considering local concentrations. We can assume that the relation-
ship between μn and those local concentrations is known.

In order to solve this PBE, we use a discretizationmethod. Previous
equations have then been discretized and their exact formulations are
given in previous work (Morchain et al., 2013). The biological popu-
lation is segregated within J classes referred by jAf1;…; Jg. Each class
is characterized by its biological growth rate μj:

μj ¼ μmax
j�1
J�1

ð6Þ

The biomass concentration within the class j is noted Xj, the
total biomass concentration XT is then given by

XT ¼ ∑
J

j ¼ 1
Xj ð7Þ

Each concentration Xj is transported by the liquid phase as
dissolved species, which allow applying Eq. (1) to those J conc-
entrations.

The migration of biomass between classes is presented in Fig. 2.
A change in the environment results in a modification of the
optimal growth rate, μn, represented by the double-arrow in Fig. 2.
The population does not adapt immediately to the new environ-
ment, but migrates toward the two classes surrounding μn at a rate
controlled by the time constants Tu and Td.

The second term of Eq. (3) represents the formation of new cells
with a growth rate equal to μ. After discretizing this term, we
introduce the actual growth rate μj

a. Indeed, if the environmental
conditions are favorable, cells will be able to achieve the growth
rate μj corresponding to their class. If the environment is limiting,
cells will not be able to grow at their potential growth rate μj and
will be limited to the maximum growth rate possible in that env-
ironment, μn. Thus, the actual growth rate in each class is calculated
as the minimum of the two: μa

j ¼min μj;μn

� �
. In the discretized

version of Eq. (3), the rate of cell production is therefore defined as
μa
j Xj. See also Appendix A for further details.
It is noteworthy that cells with a specific growth rate smaller

than μn are limited by their own biological capabilities whereas
those having a specific growth rate higher than μn will be limited
by the environment. Although the environment is the same for all
cells, their metabolic behaviors are therefore expected to be diff-
erent. The population balance model thus introduces inertia, or
time delay, in the dynamic response of the cell population to a
changing environment. It decouples the actual growth rate of the
population from local concentrations.

2.3. Metabolic model

2.3.1. General description
The metabolic model is invoked for each class of individuals

described in the population balance model. It allows the calcula-
tion of the specific reaction rates for each group of individuals.
This step only requires the knowledge of the concentrations in the
liquid phase and the specific growth rate of individuals (related to
their class index).

Our metabolic model for E. coli is based on the one described by Xu
et al. (1999): their model details the growth of E. coli in aerobic
conditions in the presence of glucose or acetate. They considered a
metabolism, called “overflow metabolism”, leading to acetate forma-
tionwhen the oxidative pathway for energy productionwas saturated.

Based on their work, we added a fermentative pathway for energy
production triggered in anaerobic conditions, or when the oxidative
pathway is saturated. We also dissociated the overflow metabolism
from energy or biomass production, which was not the case in Xu et
al.'s model. Now, this metabolism is triggered when there is a dise-
quilibrium between glucose assimilation and needs. Finally, we used
the Pirt's formulation (Pirt, 1965) to estimate the conversion yield of
glucose in biomass as explained in Appendix A.

Then, our metabolic model is based on four categories of bio-
logical reactions:

■ Anabolism ðanaÞ: biomass production through glucose (or ace-
tate) and energy consumption.

■ Oxidative catabolism ðoxyÞ: energy production through oxida-
tive pathway.

■ Fermentative catabolism ðfermÞ: energy production through fer-
mentative pathway (mixed-acid fermentation).

■ Metabolism ðoverÞ: production of acetate through glucose over-
consumption.

The oxidative and fermentative catabolism pathways allow to
produce the energy needed for biomass growth. In presence of
oxygen, the oxidative pathway will be preferably used for its better
energetic yield. The fermentative pathway is triggered only when

Fig. 2. Schematic representation of mechanisms affecting the specific growth rate
distribution.
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the energetic need for growth is not fulfilled by the oxidative
pathway, it leads to acetate formation.

It is known that E. coli is able to grow using glucose (G), or acetate
(A) if glucose is depleted, as carbon source. If a cell consumes more
glucose than what it is able to use, the amount in excess will be
converted in acetate through the overflow metabolism (Matsuoka
and Shimizu, 2013). In our work, we assimilated the energy to mol-
ecules of Adenosine TriPhosphate (ATP, noted E) which is the main
energy source used for cellular functions.

Those considerations lead to the following set of reactions,
represented in Fig. 3:

GþYEGE⟶
qGana YXGX ðR1Þ

AþYEAE⟶
qAana YXAX ðR10Þ

GþYOGO⟶
qGoxy

Yo
EGE ðR2Þ

AþYOAO⟶
qAoxy

Yo
EAE ðR20Þ

G⟶
qGferm

Yf
EGEþYAGA ðR3Þ

G⟶
qGover YAGA ðR4Þ
With YBA being stoichiometric molar coefficients in molB mol�1

A
while qGα and qAα are the specific reaction rates on G and A res-
pectively expressed in molG g�1

X h�1 and molA g�1
X h�1.

2.3.2. Solution procedure
The improvements made between Xu et al.'s model and ours do

not rely only on the new fermentative reaction, but mainly on its
strong coupling with the population balance model. Our goal is
here to estimate the reaction rates for individuals in each class.
When solving the ODEs set, the following procedure will be called
for each class of the population balance model in each compart-
ment of the hydrodynamic model. Although modern metabolic
flux calculations now refer to time-consuming optimization meth-
ods, our procedure is a hierarchic method, consisting in a set of
tests, similar to the method used by Xu et al. (1999). The advantage
of the simple method adopted here is to allow a direct and rapid
calculation of the reaction rates.

First, let us dissociate the overflow reaction (R4) from “useful
reactions”. By useful reaction, we mean the reactions whose goal is
the production of new cells, through direct production (anabolism:
R1 and R0

1) or energy production (catabolism: R2, R
0
2 and R3).

Our main hypothesis is that there is an energetic balance
within a cell: the rate of ATP production through catabolism rea-
ctions must be equal to the rate of ATP consumption by anabolism.
Under that assumption, we will be able to define a method to
estimate the useful reaction rates of a cell, just by knowing its
specific growth rate μj, and liquid-phase concentrations (G, A, O).
This method is represented by the hereunder function f, and is
detailed in Appendix A.

f : ½0; μmax� � R3
þ⟶R5ðμj;G;A;OÞ↦ðqGana; qAana; qGoxy; qAoxy; qGfermÞ ð8Þ

With this method defined, the overflow reaction rate is the
only one missing. In our model, this metabolism is triggered when
a cell consumes (or uptakes) more glucose than what is needed for
its growth.

Let us note that ΦG
u the useful glucose uptake rate, i.e. the

amount of glucose which is used by anabolism and catabolism rea-
ctions. This rate is then defined as

Φu
G;j ¼ qGana;jþqGoxy;jþqGferm;j ð9Þ

The reaction rate of the overflow metabolism, will simply be
the difference between the total glucose uptake rate ΦG;j and the
useful part of this rate Φu

G;j:

qGover;j ¼ΦG;j�Φu
G;j ð10Þ

Closing this problem finally requires an estimation of the total
glucose uptake rateΦG;j. It has been observed that the glucose uptake
rate, in continuous cultures of E. coli, is not correlated to the growth
rate (Leegwater et al., 1982; Natarajan and Srienc, 2000). In other
words, the glucose uptake rate will be the same for all cells, no matter
their class-index.

As cells dynamically adapt their uptake capacity in response to
substrate fluctuations (Ferenci, 1996), our proposal is to consider
that the regulation of the uptake system is fast compared to the
characteristic time of concentration fluctuations. This adaptation
of the uptake system will be made in order to uptake the amount
of glucose that would be needed for internal reactions if the cell
were at equilibrium with the environment.

By definition, cells at equilibrium do not produce overflow
metabolites and therefore ΦG;j can be expressed as

8 jAf1;…; Jg;ΦG;j ¼Φn

G ¼Φu
GðμnÞ ð11Þ

In other words, the glucose uptake rate equals the sum of
glucose internal utilization rates of a cell whose biological growth
rate is μj ¼ μn.

The last requirement in this procedure is an expression for μn.
This equilibrium growth rate represents the mean growth rate of
a biological population adapted to its environment. Usually, this

Fig. 3. Representation of the internal reactions considered in the metabolic model.
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growth rate is modelized using an empirical law such as a Monod
formulation which we used here.

We consider growth on two different substrates: glucose and
acetate. The presence of glucose strongly inhibits the use of acetate
(Xu et al., 1999). Moreover, acetate is known for its inhibition pro-
perties. This leads to the following formulation for μn :

μGn ¼ μG
max

G
GþKG

O
OþKO

Ki;A

AþKi;A
ð12Þ

μAn ¼ μA
max

A
AþKA

O
OþKO

Ki;G

GþKi;G:
ð13Þ

μn ¼ μGnþμAn ð14Þ
Summing up, the calculation process requires the following steps:

(i) Estimate the equilibrium growth rate from local concentra-
tions:

G;A;O↦μn

(ii) Estimate the glucose consumption rate of a virtual cell at
equilibrium with its environment:

ðqGnα ; qAnα Þ ¼ f ðμn;G;A;OÞ; α stands for any reaction ðanabolism;

catabolism; etc:Þ

(iii) Deduce the population glucose uptake rate from this
balanced state:

ΦG ¼Φu
GðμnÞ ¼ qGnanaþqGnoxyþqGnferm

(iv) In each class jAf1;…; Jg, estimate the internal reaction rates
for anabolism and catabolism:

ðqGα;j; qAα;jÞ ¼ f ðμj;G;A;OÞ

(v) In each class, deduce from precedent results the overflow
reaction rate:

qGover;j ¼ΦG�qGana;j�qGoxy;j�qGferm;j

It must be understood that all these reaction rates will strongly
depend on the class-index of the considered cell. In the same
environment, two cells of different classes will exhibit very diff-
erent behaviors. An illustration of the variety of behaviors encoun-
tered in a same population, for a particular environment, is given
in Appendix A after the presentation of the method f.

2.3.3. Overall reaction rates
Knowing the reaction rates for each reaction, the specific con-

sumption or production rates ri;j in gi g
�1
Xj

h�1 are calculated:

rX;j ¼ qGana;jYXGþqAana;jYXA

� �
MX ¼ μa

j ð15Þ

rG;j ¼ � qGana;jþqGoxy;jþqGferm;jþqGover;j
� �

MG ð16Þ

rA;j ¼ qGferm;jYAGþqGover;jYAG�qAoxy;j�qAana;j
� �

MA ð17Þ

rO;j ¼ � qGoxy;jYOGþqAoxy;jYOA

� �
MO ð18Þ

The volumetric reaction rates needed in the mass conservation
equation (Eq. (1)), Ri in gi L

�1 h�1 with iAfX;G;A;Og, are easily
obtained from a summation of the specific rates over the entire

population:

Ri ¼ ∑
J

j ¼ 1
ri;jXj ð19Þ

For all specific variables, i.e. variables expressed per gram of
biomass (subscript j), we define a mean variable over the popula-
tion using the notation � . Thus, the population growth rate, noted
~μa , is given by

~μa ¼ 1
XT

∑
J

j ¼ 1
ðμa

j XjÞ ð20Þ

Note that ~μa is the growth rate experimentally observed.
Model parameters used in our simulations of E. coli cultivations

are given in Tables 1 and 2.

3. Results

3.1. Batch culture

First, our biological model has been challenged by a set of
experimental data coming from a batch culture conducted in a
15 liters stirred tank reactor. This culture and related measure-
ment methods have been described by Xu et al. (1999). From these
data, it can be assumed that mixing and oxygen mass transfer
were not limiting, so that the reactor is treated as perfectly mixed.
Thus, the associated Compartment Model consisted in a single
compartment (Mf¼0). In the experiment, the oxygen concentra-
tion was regulated around a value corresponding to 30% of sat-
uration. Accordingly it was decided to discard the conservation
equation for oxygen in the liquid phase and to impose a constant
value in the simulations.

During a 12 h culture, measurements of glucose, biomass and
acetate concentrations were carried out each hour. Plus, a respiro-
metric monitoring allowed to determine the Oxygen Consumption
Rate (OCR in mmolO L�1 h�1). In that paper the authors proposed
a metabolic model for aerobic cultivation of E. coli in which over-
flow metabolism resulted from the saturation of the oxidative cap-
acity of cells. Our formulation is slightly different: overflow results
from an extra assimilation of substrate compared to the cell needs.
The latter may include energy production by fermentation if the
oxidative capacity is saturated. Therefore it was essential to check

Table 1
Model constants for E. coli.

Symbol Value Unit Source

Molar masses
MX 113.1 gX mol�1

X
a

MG 180.2 gG mol�1
G

MO 32.0 gO mol�1
O

MA 59.0 gA mol�1
A

Affinity and inhibition constants
KG 0.05 gG L�1 0:05b

0:095c

(

KA 0.05 gA L�1 0.05b

KO 0.1 mgO L�1 0:0768c

0:1d

(

Ki;G 0.2 gG L�1

Ki;A 3.0e gA L�1 4.0–5.0b

Ko
i;A 4.0 gA L�1 4.0b

a The biomass is represented by the typical chemical formula C5H7NO2.
b Xu et al. (1999).
c Meadows et al. (2010).
dMorchain et al. (2013).
e Curve fitting.
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that our modification constitutes a real improvement while pre-
serving the original model capacities.

Results for batch culture simulations with both models, as well
as experimental data, are shown in Fig. 4a,b,e,f. The initial conc-
entrations used for simulations are detailed in Table 3. The initial
biomass concentration, X0, was not reported by Xu et al. (1999).
After implementing the original model described by these auth-
ors, the initial biomass concentration could be identified through a
curve fitting of the data. The value obtained was also used as the
initial condition for our simulations.

We decided to initialize the population in the class correspond-
ing to μj ¼ 0:4 h�1. This value is chosen as it gives the best fitting
of experimental data. The reason for this choice is further detailed
at the beginning of the discussion section.

The results presented in Fig. 4 were obtained using 100 classes
in our population balance model. Unpublished data show that the
simulation results are independent from the number of classes as
long as this number is higher than 60.

Fig. 4a and b represents the concentrations of glucose and
acetate over time. The substrate consumption is perfectly repre-
sented by both models, however those models differ in the way
this substrate is used, leading to a difference in acetate product-
ion. When glucose is depleted, the acetate is re-consumed at a rate
consistent with experimental observation. Our model provides a
much better fit of the experimental data which is not the result of
a parameter adjustment as will be discussed later on. Fig. 4e and f
shows a good prediction of oxygen consumption as long as glucose
is present. This prediction becomes less accurate as soon as this

substrate is entirely consumed. In such a situation, some phenom-
ena like endogenous metabolisms are known to participate in the
oxygen consumption. Yet, such details are not implemented in our
model, leading to those prediction errors.

The experimental concentrations have been post-processed to
determine the experimental apparent growth rate ~μa and acetate
variation rate ~rA as detailed in the following equations:

~μa tiþtiþ1

2

� �
¼ Xiþ1�Xi

tiþ1�ti

XiþXiþ1

2

� ��1

ð21Þ

~rA
tiþtiþ1

2

� �
¼ Aiþ1�Ai

tiþ1�ti

XiþXiþ1

2

� ��1

ð22Þ

With A and X being the experimental concentrations of Acetate
(in gA L�1) and Biomass (in gX L�1). The subscripts i and iþ1 refer
to two consecutive samples and analysis.

As shown in Fig. 4b, our model predicts acetate formation
almost perfectly compared to Xu et al's model. This is mainly exp-
lained by the way our model differentiates the two acetate origins:
the fermentation, and the overflow metabolism.

At initial conditions, glucose and oxygen concentrations are
high compared to their affinity constants, meaning that culture
conditions are optimal (here, μn

0 � 0:64 h�1). Meanwhile, it is obs-
erved experimentally that the specific rate of acetate production is
high too. However, Xu et al.'s model is not able to predict that high
initial acetate production (Fig. 4d): only a constant production rate
is predicted, and is correlated to an oxygen deficiency caused by a
low value of the maximum oxygen uptake rate. On the opposite,
our own model differentiate two phases in the acetate production.
In our model the glucose uptake rate is correlated to μn, which
happens to be high initially. However, we initialized the biological
population in a unique class such as ~μ ¼ 0:4 h�1. Then, for the first
2 h of the culture, a disequilibrium exists between the population
and its environment ( ~μoμn) leading to acetate formation through
the overflow metabolism (see ~rAover in Fig. 5b). This production
decreases along with the progressive adaptation of the population
to the environment.

Around 2 h, a switch between the two acetate origins occurs:
the high value of ~μa leads to high energetic needs, saturating the
oxidative catabolism pathway. Then, a fraction of the energy is
produced through fermentation.

It may be observed that the curve of acetate produced by the
fermentation pathway (Aferm in Fig. 5a) looks alike the curve of
acetate predicted by Xu et al.'s model (Fig. 4b). This tends to show
that the so-called overflow metabolism used in their model con-
sists in a fermentative metabolism. Indeed, their model links ace-
tate production with energy and cell production as does our ferm-
entation reaction (R3).

Here, we chose to initialize the population with a Dirac distribu-
tion by concentrating all biomass in a unique class. However, many
other distributions could have led to similar results such as, maybe,
a Gaussian distribution centered around μ¼ 0:45 h�1 or even a
multimodal distribution. Here, we want to point out that there is a
lack of experimental data about the state of the population in the
inoculum used in biological cultures. As measurements are usually
carried out at the population scale, hardly no data exists about the
distribution of biological parameters even though such data appear
more and more mandatory for the good comprehension of biologi-
cal behaviors observed in bio-reactors (Dhar and McKinney, 2007).

The inhibition of respiration by acetate is underlined in Fig. 4e
as the specific oxygen consumption rate ~ΦO decreases significantly
between 2 and 8 h. This inhibition strengthens the acetate produ-
ction through fermentation by limiting the use of the oxidative
pathway.

Those results allow to validate our biological model in a reactor
in which hydrodynamics has no visible effect on the biological

Table 2
Model constants for E. coli

Symbol Value Unit Source

Molar yields
YEG 12.05 molE mol�1

G

Ymax
XG 1.32 molX mol�1

G
1.2570.05

a

m 250 μmolG g�1
X :h�1 310b

220c

350740d

8>><
>>:

YOG 6.0 molO mol�1
G

6.0c,d

Yo
EG 20.0 molE mol�1

G
18.7d

Yf
EG

3.0 molE mol�1
G

3.0e

YAG 2.0 molA mol�1
G

2.0c

YEA 4.0 molE mol�1
A

YXA 0.40f molX mol�1
A

0.21c

YOA 2.0 molO mol�1
A

2.0c,d

Yo
EA 4.67 molE mol�1

A
4.67d

Biological limitations
μGmax 0.663 gX :g

�1
X h�1 0:67670:038

g

μAmax 0.032 gX g�1
X h�1 0:05270:028

g

Φmax
O 15.6 mmolO g�1

X h�1 15:3719c

20d;h

(

Growth rate adaptation
Tu 1.9 h 1.9i

Td 6.7f h 1.9i

a Values extracted from Xu's overall yield YX=S;of and YX=S;ov (Xu et al., 1999)
coupled with our Y∅=f =o

EG values.
b Russell and Cook (1995).
c Xu et al. (1999).
d Varma et al. (1993).
e Wang et al. (2010).
f Curve fitting.
g Extracted from Xu's qAc;max, qSmax, YX=A and YX=S;ox (Xu et al., 1999).
h Meadows et al. (2010).
i Morchain and Fonade (2009).
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population. However, in large bioreactors, heterogeneities may
appear under certain conditions depending on the quality of
mixing and the intensity of biological reactions. Thus, the ability
of our model to predict the complex transition between homo-
geneous and heterogeneous concentration fields has to be chal-
lenged against experimental data.

3.2. Fedbatch culture

The validation of our model in large bioreactors was performed
using data provided by Xu et al. (1999a) on a fed-batch culture
conducted in a 30 m3 reactor stirred with four impellers (Rushton
turbines). This reactor has been described previously (Xu et al.,
1999a; Larsson et al., 1996) and its matrix of volume flow rates, Mf,
was computed using the compartment model proposed by Vrábel
et al. (1999, 2000, 2001) with 70 compartments. The Appendix B
details the calculation of Mf for this reactor.

The validation of our implementation of this compartment
model was performed through the simulation of a tracer pulse-
response. Fig. 6 details the predicted relative concentration of the
tracer on top, middle and bottom positions of the reactor by
injecting the tracer in the top-stirrer compartment. These curves
are very similar to those presented by Vrábel et al. (1999) which
validates our implementation of the flow map at the reactor scale.

Fig. 4. Comparison of experimental data with simulation results in a batch reactor.

Table 3
Initial concentrations for batch culture.

Symbol Value Unit

X0 0.077 gX L�1

A0 0.00 gA L�1

G0 13.86 gG L�1

O0 2.70 mgO L�1
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We also deduce from this tracer experiment that the overall
mixing time in this reactor is about tmix � 250 s.

In the following, the notation 〈〉 describes the volumetric ave-
rage of variables. By default, the volumetric average is taken over
the entire reactor volume, but a subscript may be used to specify a
sub-part of the reactor (top, middle or bottom). The Fig. 7
compares the results from our simulation, the experimental data
(Xu et al., 1999a) and the curves coming from Xu et al.'s simula-
tions using Xu et al.'s model (Vrábel et al., 2001). Initial conditions
are reported in Table 4. The biomass was initially put in the class
corresponding to μj ¼ 0:63 h�1 as this choice leads to the best
curve fitting. As for the batch culture, consequences of this choice
are detailed at the beginning of the discussion.

It is important to note that the simulation of the fedbatch
culture was carried out without further adjustments of our model
parameters compared to the batch culture simulation.

Fig. 7a details the evolution of glucose concentrations on top,
middle and bottom positions. It should be noticed that the way
Vrábel et al. (2001) modeled the feed leads to an overestimation of
glucose concentration during the first hours of culture (Fig. 7a)
which is not consistent with experimental measurements. Never-
theless, the same sudden shift of the feed flow rate at t¼0.8 h was
imposed in our simulation in order to allow the assessment of the
results. Both models give very similar results regarding the glucose

concentration. It is likely that a modification of the affinity
constant for glucose could produce better agreement between
the experimental data and the simulation results. However this
does not constitute an objective for this work which is more
focused on the minimal structure of a two-way coupling approach
for the simulation of heterogeneous bioreactors. It will appear
clearly in the next paragraphs that the benefits of the coupled
approach is more related to the structure of the model than to the
accuracy of the parameter identification procedure.

The first observation of interest is on the total biomass concen-
tration XTh i given in Fig. 7b. The mixing-time, tmix � 250 s, is
negligible compared to the characteristic time of biological growth
(Morchain et al., 2014), then the total biomass concentration is
independent of the position within the reactor. Vrábel et al.'s sim-
ulation over-predicted the biomass production and an unjustified
adjustment of the conversion yield YXG by a factor as large as 0.76
was necessary to fit experimental data. Meanwhile, our model
correctly predicts this production by taking into account the known
phenomena of yield decrease at low growth rate using the Pirt's
formulation (Pirt, 1965) as explained in Appendix A.

The next remarkable point is related to the acetate production.
The acetate concentration is presented in Fig. 7c and its specific
variation rate is given in Fig. 7d. In that case a noticeable
difference between the model predictions appears. Whereas the
model of Xu et al. predicted no residual acetate, our coupled
model qualitatively predicts the transient accumulation before
10 h and the formation of a spatial gradient as the biomass con-
centration increases.

As shown in Fig. 7d, the acetate is produced everywhere in the
reactor before 7 h. After that, it appears that acetate is produced in
the upper part of the reactor and is consumed in the lower part of
the reactor where the glucose concentration is very low. Moreover
the data in Fig. 7d also allow the identification of the mechanisms
involved. The thick dotted-dashed line corresponds to the

Fig. 5. Differentiation of acetate production pathway throughout the culture. Aferm: acetate produced through fermentative catabolism, Aover: acetate produced by overflow
metabolism.

Fig. 6. Pulse-response monitoring after tracer injection in the feeding compartment.

Table 4
Fed-batch culture—initial conditions.

Value Unit

Volume V0 22 m3

Biomass X0 0.10 gX L�1

Glucose G0 0.029 gG L�1

Acetate A0 0.05 gA L�1
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production through fermentation. The fermentation metabolism is
only triggered between 4 and 7 h leading to the acetate peak
observable at the same time in Fig. 7c. This demonstrates that,
apart from that period of time, acetate is produced through
overflow metabolism.

4. Discussion

Our modeling approach, based on population balance model, is
clearly dependent on the initial conditions, obviously X and G
concentrations, but also the initial growth rate distribution whose
choice may have a real impact on the simulation results. This is a
common feature of biological systems which has been discarded in
most previous modeling approaches. From that initial distribution
will depend the global kinetic of the culture, but also the initial
disequilibrium between the population and its environment which
leads to different metabolic behaviors.

In batch and fedbatch cultures, we decided to concentrate all
the biological population in one class. The choice of that class was
made in order to fit the results with experimental data.

For the batch culture, the initial population growth rate
imposed in the simulation (μj ¼ 0:4 h�1) is different from the exp-
erimental one reported by Xu et al. (1999). Based on their exp-
erimental measurements, Xu et al. (1999) estimated the initial

growth rate around μ¼ 0:56 h�1. However, since initial biomass
concentrations are negligible, this estimation of the initial growth
rate may be flawed and we estimate, by an error analysis, that the
actual growth rate is lies between 0:3 h�1 and 0:8 h�1.

With our model, the choice of the initial distribution has two
main consequences: the first one is about the initial disequilibrium
between the biological population and the environment. Actually,
the value of μ returned by Xu et al.'s model is very similar to what
we call the equilibrium growth rate, μn. Then, by initializing the
entire population at μj ¼ 0:4 h�1, we artificially create the initial
disequilibrium that explains, with our model, the high value of ~rA .
Many different initial distributions could produce similar results in
terms of ~rA . The fact is that the experimental information on the
actual distribution of growth rate at t¼0 is not available.

The second consequence is about the global kinetic of the culture.
If we initialized the biomass at μj ¼ 0:2 h�1, we would have inc-
reased the disequilibrium, leading to an higher production of acetate,
but we also would have add a lag in the biomass growth (glucose
consumption would have been slower). We choose the value of μj ¼
0:4 h�1 as it was the best compromise between the global kinetic
and the acetate production.

The same comment applies to the initial distribution of fedbatch
culture. Moreover, in continuous culture (e.g. fedbatch or chemostat),
the medium is continuously renewed and the duration of the culture
exceeds the time scale of biological growth-rate adaptation. Then, after

Fig. 7. Experimental data and simulation results in the 30 m3 fedbatch reactor.
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a few hours, the population tends to “forget” its initial state. For
example, in our fedbatch simulation, the choice of the initial distribu-
tion only has an effect for the first hours of the simulation: it is found
that the initial conditions are forgotten when the culture enters the
“mixing/reaction competition zone” after 7 h. So it has no fundamental
impact on the observations made when the reactor becomes spatially
heterogeneous.

On the results of the models, the main difference between
ours and Xu et al.'s one is shown on fedbatch acetate curves.
Indeed, their model was not able to predict the acetate residual
concentration that is experimentally observed after 10 h of
fedbatch culture while ours predicts the apparition of an acetate
gradient over the reactor.

To understand this capability of our model, one must distinguish
two different phases in the culture. For the 7 first hours of culture,
the reactor appears homogeneous while, after 10 h, vertical gradi-
ents appear for glucose and acetate. It is worth investigating more
specifically what happens during the transitional phase between
7 h and 10 h. This can be done through the time scale analysis of the
various processes involved.

In a previous paper (Morchain et al., 2014), we introduced the
time scale of the substrate assimilation, tS:

tG ¼ 〈G〉
〈RG〉

� MXYXG〈G〉
MGμmax〈XT 〉

ð23Þ

Fig. 8 shows the evolution of this assimilation time-scale com-
pared to the mixing time. It can be seen that a switch occurs around
7 h with the assimilation time becoming smaller than the mixing
time. This means that at the beginning of the culture, the glucose
poured into the reactor is quickly mixed compared to the reaction
rate, leading to an homogeneous reactor. Then a regime switch
occurs, the substrate consumption gets faster (due to an increasing
biomass concentration) and substrate is now consumed before
reaching the bottom of the reactor, leading to the observed gradients.

A gradient on acetate concentration appears around 2 h after the
glucose gradient. This delay of 2 h results from the dynamic ada-
ptation of the population (Eq. (4)). This clearly illustrates the of dyn-
amic responses at the reactor scale: the acetate gradient is a cons-
equence of the biomass adaptation to the heterogeneous glucose
concentration field induced by a mixing limitation.

Those different situations may be visualized and understood in
Figs. 9 and 10. It is shown that around 8 h the reactor changes from
a homogeneous to a heterogeneous state. After the transitional
phase, glucose is mainly present around the feeding point while a

major fraction of the reactor has little or no substrate as shown in
Fig. 9 top. This leads to the strong spatial variation of the equi-
librium growth rate (Fig. 9 bottom). In our model, the uptake rate
is closely related to local concentrations whereas the utiliza-
tion rate for growth is determined by the volume average concen-
tration. This is consistent with the fact that the adaptation of
uptake systems is rather fast compared to that of the growth rate.
This difference in the response dynamics is thought to be respon-
sible for the cell disequilibrium.

As explained previously, the overflow metabolism is triggered
when the biomass is in a rich-in-substrate environment while
being adapted to a limiting environment. This is what happens
during the heterogeneous phase: the biomass is accustomed to a
mean concentration but happens to be in a high concentration
zone around the feeding point, and in low concentration zones
elsewhere, leading to a permanent disequilibrium (Fig. 10 top).
This unbalanced population reacts by producing acetate through
overflow in the feeding area. This acetate is afterward transported
in the areas with low glucose concentrations and is consumed
there by the starving biomass, leading to the acetate gradient as
underlined in Fig. 10 bottom.

Furthermore, it is interesting to observe that, the time constant
of growth rate adaptation being larger than the circulation time,
the mean biological growth rate ~μ is related to the volume average
concentration of glucose 〈G〉. Thus, as already demonstrated in a
previous work, the population distribution in the μ-space is ind-
ependent of the location in the reactor, but the difference between
the population state and the local environment is spatially dep-
endent (Morchain et al., 2014). Although the time constant related
to the specific growth rate adaptation is much larger than the mix-
ing time, the repeated exposure to high and low concentrations
over hours has a significant effect on the width of specific growth
rate distribution of the population. Indeed, Fig. 11 shows the
evolution of the population distribution over classes compared
with the equilibrium growth rate in different areas of the reactor.
The width of the distribution is related to the width of the colored
zone around the volumetric mean. In this figure β is defined by

βðt;μjÞ ¼
XjðtÞ

maxJj ¼ 1ðXjðtÞÞ
ð24Þ

It is indicative of the population growth rate distribution width
(note that only values higher than 5% are shown). Thus it is visible
that the population is always distributed (and almost centered)
around the mean volumetric growth rate.

It may be seen that after 10 h, when a major volumetric fraction
of this reactor has low glucose concentrations, the population gets
used to these low concentrations by moving to lowest classes. Then,
this population is no longer capable to use the glucose efficiently
when being in the feeding area, leading to these high local acetate
productions.

Such phenomena may only be predicted by considering the
disequilibrium between the substrate consumption and the cell
needs. The quantification of this disequilibrium relies upon the use
of a population balance model to describe the dynamic adaptation
of the growth rate.

In the present work, we considered in our modeling that
biological heterogeneity in terms of growth rate distribution is
induced by the environment (exogenous heterogeneity). In a
chemostat, this characteristic of the model ensures that the
population growth rate will tend, in the long term, to the dilution
rate. In a constant environment, all cells will be distributed in the
two classes surrounding μn as shown in Morchain et al. (2013).
However, recent experimental data indicate that an interdivision
time distribution exists in a chemostat (Nobs and Maerkl, 2014). It
implies that endogenous source of heterogeneity is also present.

Fig. 8. Comparison of mixing and substrate assimilation time scales during the
fedbatch culture.
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Taking this fact into account in the modeling constitutes a
potential way for future improvements. Still, the current formula-
tion proposed in this work remains meaningful in a large scale
bioreactor in which concentration gradients are present and play a
dominant role in the production of heterogeneity within the
population.

5. Conclusions

In this work, we focused on the dynamic simulation of bior-
eactors. Due to the strong two-way coupling between the biological
behavior and the spatial and temporal variations of concentration
fields, we introduced a modeling using a metabolic and a popula-
tion balance models. It leads to the description of a possible dis-
equilibrium between the biomass and its environment, interpreted
as an imbalance between a cell needs and its actual glucose cons-
umption. This modelization has been applied to the well known
bacteria Escherichia coli in order to challenge our model with data
extracted from the literature.

We integrated this biological model with a compartment model
describing the hydrodynamics of two reactors of different scales:
(i) a 15 L homogeneous reactor and (ii) a 30 m3 stirred reactor. Our
model was consistent enough to allow good predictions of
experimental measurements at two reactor scales without

modifying its parameters. Thus, we shown that the coupling of a
metabolic and a population balance models strongly improves the
prediction of acetate production, as well as the overall biological
behavior, compared to the standalone metabolic model. In parti-
cular, we observed that the formation of a glucose gradient
necessarily induces the production and the consumption of
acetate in different zones of the reactor. Such phenomena could
not be predicted without introducing an unbalanced biomass in
our modeling. So it is believed that these concepts leading to a
two-way coupled approach is a promising way to address the issue
of simulating industrial bioreactors.

Notation

Roman
A acetate
E energy, molecule of ATP
G glucose
J number of classes
K affinity or inhibition biological constant (g L�1)
M molar mass (g mol�1)
m maintenance rate (molG g�1

X :h�1)

Mf matrix of volume flow rates

Fig. 9. Glucose concentration field (top) and related equilibrium growth rates (bottom) in the 30 m3 reactor during the cultivation. The grid corresponds to the 70
compartments of the hydrodynamic model. The numerical data are local instantaneous values.
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N number of compartments
O oxygen
q specific reaction rate (mol g�1

X h�1)
R volumetric reaction rate (g L�1 h�1)
r specific reaction rate (g g�1

X h�1)
T volumetric transfer rate (g L�1 h�1)

Td time constant for downward transfer between classes (h)

Tu time constant for upward transfer between classes (h)
t time (h)
X cells, biomass
Y stoichiometric molar coefficient (mol mol�1)

Subscript and superscript

n variable describing a cell at equilibrium with its
environment

0 initial conditions
a actual or achieved
f fermentative reaction
i generic notation for any species (A, E, G, O or X)
j class index
m compartment index
max maximum value of a biological constant
n compartment index
o oxidative reaction
T total over the biological population

Greek

α generic notation for any biological reaction
Φ biological uptake rate ðmol g�1

X h�1Þ
μ specific growth rate of a cell (h�1)
ζ rate of change of specific growth rate (h�2)

Fig. 10. Overall population disequilibrium expressed as μn� ~μ (top) and acetate production/consumption rates (bottom). The grid corresponds to the 70 compartments of the
hydrodynamic model. The numerical data are local instantaneous values.

Fig. 11. Evolution of biological population width, and equilibrium growth rates at
different locations in the reactor.
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Appendix A. Metabolic reaction rates calculation

This appendix details explicitly the calculation procedure of
biological reaction rates. It presents a method to calculate these
reactions rates, starting from the cell biological growth rate μj and
the liquid-phase concentrations (in glucose (G), acetate (A) and
oxygen (O)). In its principle, this method is similar to that pro-
posed by Xu et al. (1999): it consists in a set of tests (hierarchic
method). This procedure defines the rates of the following reactions:

GþYEGE⟶
qGana YXGX ðR1Þ

AþYEAE⟶
qAana YXAX ðR10Þ

GþYOGO⟶
qGoxy

Yo
EGE ðR2Þ

AþYOAO⟶
qAoxy

Yo
EAE ðR20Þ

G⟶
qGferm

Yf
EGEþYAGA ðR3Þ

This estimation is here possible by assuming an energetic
balance within a cell: the rate of ATP production, through cata-
bolism pathways, is strictly equal to the rate of ATP consumption
through anabolism:

Yo
EGq

G
oxyþYf

EGq
G
ferm ¼ YEGqGana ðA:1Þ

Yo
EAq

A
oxy ¼ YEAqAana ðA:2Þ

First, we must evaluate the actual growth rate of the conside-
red cell. We consider that growth may be limited either by the
biological growth rate (internal limitation), or by the environment
concentrations (external limitation). Those concentrations allow to
compute an environment permitted (or equilibrium) growth-rate μn :

μGn ¼ μG
max

G
GþKG

O
OþKO

Ki;A

AþKi;A
ðA:3Þ

μAn ¼ μA
max

A
AþKA

O
OþKO

Ki;G

GþKi;G
ðA:4Þ

μn ¼ μGnþμAn ðA:5Þ
Then, the actual growth rate is defined as the minimum between

the biological, and the equilibrium, growth rates. We define an
actual growth rate for glucose-based growth (μa;G

j ), and an other
one for acetate-based growth (μa;A

j ). The sum of them leads to the
actual growth rate of the cell:

μa;G
j ¼min μj;μ

Gn
� �

ðA:6Þ

μa;A
j ¼min μj�μa;G

j ;μAn
� �

ðA:7Þ

μa
j ¼ μa;G

j þμa;A
j ¼min μj;μ

n

� �
ðA:8Þ

Anabolism

The anabolism reaction rates are directly deduced from the actual
growth rates, on G (Eq. (A.10)) and A (Eq. (A.11)), of the j-th class. The

conversion yield of glucose in biomass, YXG, is computed using the
Pirt's formulation (Pirt, 1965). This formulation, given in Eq. (A.9),
reflects the fact that maintenance operations take a major role in
substrate consumption at low growth rate while having a negligible
effect at high growth rate (Russell and Cook, 1995):

1
YXG

¼m�MX

μa
j

þ 1
Ymax
XG

ðA:9Þ

m (in molG g�1
X h�1) is the maintenance rate, representing the

amount of substrate needed for maintenance. In the present work,
m was kept constant at 250 μmolG g�1

X h�1, but for a more detailed
model it has been suggested that this rate is partially linked to the
growth rate (Holms, 1996; Meadows et al., 2010).

qGana;j ¼
μa;G
j

YXGMX
ðA:10Þ

qAana;j ¼
μa;A
j

YXAMX
ðA:11Þ

Those rates represent a cell-production rate that will effectively
be achieved. But to allow this cell production, energy must be
produced as well. We then must estimate the rate of energy pro-
duction through the oxidative pathway, and if needed, through the
fermentative pathway.

Catabolism

As the oxidative pathway provides a better energetic yield, we
make the assumption that the energy needed for anabolism will
be only produced through that pathway if possible. The fermenta-
tive pathway will only be triggered if there is an oxygen deficiency.

First, lets estimate the amount of oxygen that would be needed
(upper-script n) to produce all the energy needed. In that case, the
oxidative catabolism reaction rates would be

qG;noxy;j ¼
YEGqGana;j

Yo
EG

ðA:12Þ

qA;noxy;j ¼
YEAqAana;j

Yo
EA

ðA:13Þ

This leads to a needed oxygen consumption rate, expressed in
molO g�1

X h�1, in Eq. (A.16).

ΦG;n
O;j ¼ YOGq

G;n
oxy;j ðA:14Þ

ΦA;n
O;j ¼ YOAq

A;n
oxy;j ðA:15Þ

Φn
O;j ¼ΦG;n

O;j þΦA;n
O;j ðA:16Þ

Beside of the oxygen need, we estimate the oxygen availability
which does not depend on the considered class and relies on liquid
phase concentrations. This maximum possible oxygen consump-
tion rate (upper-script p) is assumed to follow a Monod model.
This model implements an inhibition of oxygen uptake rate by
acetate as observed by Xu et al. (1999):

Φp
O ¼Φmax

O
O

OþKO

KO
i;A

AþKO
i;A

ðA:17Þ

If the oxygen availability excess the cell needs (Φp
OZΦn

O;j), then
all energy is produced by oxidative pathway:

qGoxy;j ¼ qG;noxy;j ðA:18Þ

qAoxy;j ¼ qA;noxy;j ðA:19Þ

qGferm;j ¼ 0 ðA:20Þ
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Otherwise, if oxygen is a limiting factor (Φp
OoΦn

O;j), the
fermentative catabolism is triggered to fulfill energetic needs.
Then, the fermentation reaction rate is deduced from the energy
balance (Eq. (A.1):

qGoxy;j ¼ qG;noxy;j

Φp
O

Φn
O;j

ðA:180Þ

qAoxy;j ¼ qA;noxy;j

Φp
O

Φn
O;j

ðA:190Þ

qGferm;j ¼
YEGqGana;j�Yo

EGq
G
oxy;j

Yf
EG

ðA:200Þ

Using Eqs. (A.1)–(A.20)0, we define the function f introduced in
Section 2.3.2:

f : ½0; μmax� � R3
þ⟶R5

ðμj;G;A;OÞ↦ qGana; q
A
ana; q

G
oxy; q

A
oxy; q

G
ferm

� �
ðA:21Þ

By using both this function and the calculation procedure of the
overflow reaction rate, we may plot all the reaction rates throughout a
population in a given environment as done in Fig. A1. This figure has
been computed with the following concentrations: G¼ 0:2 gG L�1,

O¼ 3:6 mgO L�1 and A¼ 0:06 gA L�1. Some constants were also
modified to make the figure more readable: μG

max ¼ 0:6 h�1, μA
max ¼

0:3 h�1 and Φmax
O ¼ 8 mmolO g�1

X h�1.
In this figure, each abscissa corresponds to the behavior of a

particular class.
Fig. A1a shows the evolution of the actual growth rates both on

glucose and acetate following Eqs. (A.6)–(A.8). Thus, three differ-
ent regimes may be observed:

■ μjA ½0;μGn�: only glucose in consumed due to strong internal
limitations.

■ μjA ½μGn;μn�: both glucose and acetate are consumed, but
growth is still limited by internal capabilities.

■ μjA ½μn;μmax�: availabilities of glucose and acetate limit growth.

Fig. A1b shows the evolution of the needed oxygen consump-
tion rateΦO

n , expressed in Eq. (A.16). When the oxygen needs (ΦO
n)

exceed the oxygen availability (ΦO
p , Eq. (A.17)), the oxygen con-

sumption is saturated and a part of the energy is produced thr-
ough fermentation. It leads to the following regimes:

■ μjA ½0;μferm�: Energy produced only through the oxidative
pathway.

■ μjA ½μferm;μmax�: Energy produced with both oxidative and
fermentative pathways.

These two first sub-figures allow to identify, for each value of
μj, what is (or are) the factor(s) limiting growth. From that, we can
deduce the actual reaction rates, presented in Fig. A1c and d. In
particular, these inter-correlations may be observed:

1. The anabolism rates, qGana and qAana, are directly proportional to
μa;G (Eq. (A.10)) and μa;A (Eq. (A.11)).

2. The energy used for growth on acetate is always produced
through acetate oxidation, then, qAoxy is directly proportional to
qAana.

3. The rate of energy production for growth on glucose are cal-
culated such as the maximum part of this energy in produced
through the oxidative pathway, in the limit of oxygen avai-
labilities.

4. The useful part of glucose uptake, ΦG
u is the sum of qGana, q

G
oxy

and qGferm.
5. The overflow reaction rate, qGover , is defined as the difference

between Φu
GðμnÞ and Φu

GðμÞ

Again, each abscissa represents the behavior of a particular
class. It is important to note that depending on the state of the
population, not all these behaviors will be exhibited. Our biological
model couples the population balance with this metabolic model,
leading to a wide variety of different possible behaviors at the
scale of the population. In usual models, an instantaneous adapta-
tion of bacteria to their environments is postulated. When using
our metabolic model, such an hypothesis would constrain the
observed behaviors to the one described in Fig. A1 at the μn

abscissa.

Appendix B. Computation of the matrix of volume flow rates
for the fedbatch reactor

Vrábel et al. (1999, 2000, 2001) designed, challenged and used
a compartment model to run simulations compared with the
behaviors observed within their large bioreactor (30 m3). We used
the description of their compartment model to compute the
matrix of volume flow rates, Mf, needed to run our own

Fig. A1. Evolution of (a) growth rates, (b) oxygen uptake rates, (c) glucose uptake
and reactions rates and (d) acetate reaction rates, throughout the population. Left
hand side: legends of variables depending only on the environment (independent
from individuals). Right hand side: legends for corresponding curves. Legends also
detail the equations in which are given expressions of corresponding variables.
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simulations. This model is based on the definition of three flows
induced either by the use of Rushton turbines, or by the aeration.

Vrábel et al. observed that each of the four stirrers induces two
circulation loops plus a supplementary loop on the top of the
reactor as shown in Fig. B1 left. The flow in those loops is named
Circulation Flow (CF). The presence of bubble for the aeration
creates a flow that connects the circulation loops on their middles.
This aeration Induced Flow (IF) also increases the velocity of the
liquid within the circulation loops. Finally, the mixing and the
aeration leads to the apparition of vertical turbulence flow (EF).

With these observations, Vrábel et al. modelized this hydro-
dynamics by splitting the reactor's volume in 14 rows (3 per stirrer
plus 2 for the top-loop), and each row in 5 columns, as shown in
the right of Fig. B1. The last figure shows a numeration of
compartments as well as the flows going through each of them.

By definition, the matrix of volume flow rates is here a 70-by-
70 matrix. Its value on the m-th row and n-th column represents
the flow going from the compartment m to the compartment n.
For example Mf

18;19 ¼ CFþ2IF as shown in Fig. B1.
Once Mf has been designed based on values of CF, IF and EF, an

estimation of these flows is needed. The calculation method used
in estimating those flows has already been detailed by Vrábel et al.
(1999, 2000). However, their procedure needs the knowledge of
the stirrer speed and the gas-holdup throughout the culture. We
then considered a constant stirrer speed of 1 s�1, a gas flow of
1=60 m3 s�1 and an overall gas-holdup of 8%. Those values are
consistent with the range of values used by Vrábel et al. (1999,
2000, 2001).

These values lead to the following flows:

■ CF ¼ 0:32 m3 s�1

■ IF ¼ 0:04 m3 s�1

■ EF ¼ 0:28 m3 s�1
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