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Abstract

A hybrid Finite Element-Plane Wave Expansion method is presented for the

band structure analysis of phononic crystal plates with two dimensional lattice

that are in contact with acoustic half-spaces. The method enables the compu-

tation of both real (propagative) and imaginary (attenuation) components of

the Bloch wavenumber at any given frequency.

Three numerical applications are presented: a benchmark dispersion analysis

for an oil-loaded Titanium isotropic plate, the band structure analysis of a water-

loaded Tungsten slab with square cylindrical cavities and a phononic crystal

plate composed of Aurum cylinders embedded in an epoxy matrix.

Keywords: phononic crystals, leaky Bloch waves, attenuation, band structure,

finite element method, plane wave expansion method

1. Introduction

Over the past two decades, propagation of elastic waves in phononic crystal

(PC) plates has attracted much attention due to their unique dynamic properties

such as negative refraction [1], stop-band filtering [2], cloaking [3], among the

other unconventional properties. PC plates are generally made of periodically5

distributed inclusions in a hosting material (matrix) and, depending on the
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physical nature of the components, can be classified in solid-solid, fluid-fluid

and mixed solid-fluid composite systems [4].

In normal ambient conditions, the atmosphere surrounding the PC plate

does not induce significant radiation of energy due to the high impedance mis-10

match at the solid-fluid interface. Therefore, such systems are treated as being

in vacuum. However, PC plates surrounded by heavier fluids require mathe-

matical models with appropriate radiation boundary conditions. Although a

number of theoretical and experimental studies can be found in literature for

the band-structure analysis of PC plates immersed in vacuum [4, 5], their fluid-15

loaded counterparts seem to have received minor attention. Early studies in

this sense are represented by the works of Mace [6], Eatwell [7] and Mead [8],

who investigated the radiation properties of fluid-loaded plates stiffened along

one principal direction. More recently, different formulations have been pro-

posed in which half-spaces have been modelled by means of analytical methods20

[9] as well as Finite Element (FEM)-based absorbing regions [10, 11, 12] and

Perfectly Matched Layers [13, 14], while the so-called Plane Wave Expansion

(PWE) method has been used in [15, 16, 17].

The main goal behind the present paper is to develop a coupled FEM-PWE

method which enables the computation of the complex wavenumber-frequency25

band diagram for elastic PC plates with inclusions of arbitrary shape that are

in contact with perfect fluids. The proposed formulation has the major ad-

vantage of avoiding spurious modes typical of numerical methods based on a

finite discretization of the semi-infinite medium. Moreover, it can be extended

to the case of lossy materials. However, the method cannot be applied to the30

case of a PC plate with a unit cell involving different material types such as

fluid and solids. In order to benchmark the method, a fluid-loaded homoge-

neous isotropic plate is first examined, while the band structures for the real

and imaginary components of the Bloch wavenumber are shown for a 1D PC

and a 2D PC plate.35
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Figure 1: PC plate model with acoustic half-space (a), primitive cell (b) and corresponding

2D reciprocal lattice (c).

2. Hybrid Finite Element-PlaneWave Expansion (FEM-PWE) method

In this section, a hybrid variational formulation is described for the PC

plate of Fig. 1 with d1- and d2-periodicity along directions 1 and 2, respectively,

thickness h and density ρ. The plate is in contact along the surface Γf with a

perfect fluid of density ρf and sound speed cf that is infinitely extended along40

the direction 3. The domain of the primitive solid cell is denoted by V = Ωh,

where Ω = |d1g1 × d2g2| while gj represents the unit vector in the j-th direction.

By means of Bloch’s theorem, the displacement in the solid PC and pres-

sure in the fluid are given by u(x, t) = ũ(x, t)exp[i(kTx − ωt)] and p(x, t) =

p̃(x, t)exp[i(kTx − ωt)], respectively, where i is the imaginary unit, t is time,45

ω denotes the angular frequency, x = [x1, x2, x3]
T is the configuration vector,

ũ(x, t) = [ũ1, ũ2, ũ3]
T and p̃(x, t) are Ω-periodic functions while k = [κ1, κ2, 0]

T =

κΦ(ϑ) is the Bloch wavevector, being Φ(ϑ) = [cosϑ, sinϑ, 0]T and ϑ its orien-

tation angle with respect to the axis x1.

Following a procedure similar to that outlined in [5] and accounting for50

the virtual work on the plate from the external fluid, a variational formulation

for the solid PC can be stated as (the time dependency being dropped for

conciseness)

−
∫
V

ρ(x)ω2 (δũ(x))H ũ(x)dv+

∫
V

(δe(x, ϑ))H C(x)e(x, ϑ)dv−
∫
Γf

(δũ(x))Hp̃(x)n3ds = 0,

(1)

where C(x) = Cijkl(x) denotes the fourth order elasticity tensor, e(x, ϑ) =∑3
j=1 Lj [∂/∂xj + iκΦ(ϑ)gT

j ]ũ(x) indicates the Bloch strain vector, in which55
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Lj are compatibility operators defined in [18]-Eq. (8) while n3 (= ±g3) is the

outward normal at x ∈ Γf .

Eq. (1) is discretized via a standard finite element discretization scheme for

the solid PC, while the Plane Wave Expansion method [19, 20] is used to repre-

sent the wave field in the acoustic half-space. Accordingly, the displacement field60

at x ∈ V ∪ Γf is interpolated as ũ(x) = N(x)q̃(x), where N(x) is a matrix of

polynomial shape functions and q̃(x) denotes the vector of nodal displacements.

The pressure field is expanded as p(x) =
∑+∞

l,m=−∞ Almexp[i(k+ψlm)Tx],

where Alm = Plmexp(iκlmgT
3 x) and ψlm = [2πl/d1, 2πm/d2, 0]

T, being Plm an

unknown complex wave amplitude and κlm = |klm| = ±[κ2
f − (k + ψlm)T(k +65

ψlm)]1/2, in which κf = |kf | = ω/cf is the fluid wavenumber. By enforcing

the continuity equation ∂p(x)/∂n3|Γf
= −ω2ρfn

T
3 u(x) on the fluid-solid inter-

face and using orthogonality, the Bloch pressure and normal displacement mode

functions can be expressed respectively in the form

p̃(x) =

+∞∑
l,m=−∞

Almexp
(
iψT

lmx
)
, (2)

−ω2ρfn
T
3 ũ(x) =

+∞∑
l,m=−∞

iκlmAlmexp
(
iψT

lmx
)
. (3)

The Fourier coefficients in Eq. (3) are given by70

Alm(ω, ϑ) = − iρfω
2

κlm(ω, ϑ)Ω

∫
Γf

nT
3 ũ(x)exp

(−iψT
lmx

)
ds. (4)

Incorporating Eq. (4) into Eq. (2), substituting the resulting expression into

Eq. (1) and applying a standard finite element assembling procedure over the

(1, .., e, .., Ne) elements of the mesh results in the following system of equations:

⎧⎨
⎩κ2K3(ϑ) + iκ

[
K2(ϑ)− (K2(ϑ))

T
]
+K1(ϑ)− ω2

⎡
⎣M+

iρf
Ω

+∞∑
l,m=−∞

WlmWH
lm

κlm(ω, ϑ)

⎤
⎦
⎫⎬
⎭ Q̃(ω, ϑ) = 0,

(5)

where Q̃(ω, ϑ) =
⋃

e q̃e(ω, ϑ) is the global vector of nodal displacements,
⋃

e

denotes the assembling operation and75
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Re(k+ψlm) · Im(k+ψlm) = 0 Re(k+ψlm) · Im(k+ψlm) > 0 Re(k+ψlm) · Im(k+ψlm) < 0

|Re(k+ψlm)| < κf Re(κlm) > 0 Im(κlm) < 0 Im(κlm) > 0

|Re(k+ψlm)| > κf Im(κlm) > 0 Im(κlm) > 0 Im(κlm) > 0

Table 1: Physical choices of sgn(κlm), corresponding to pressure wave fields exponentially

decaying (Im(κlm) > 0) and growing (Im(κlm) < 0) at infinity along direction 3 [22].

K1(ϑ) =
⋃
e

∫
Ve

3∑
j=1

∂ (N(x))T

∂xj
LT
j Ce(x)Lj

∂N(x)

∂xj
dv, (6)

K2(ϑ) =
⋃
e

∫
Ve

3∑
j=1

(N(x))
T
gj (Φ(ϑ))

T
LT
j Ce(x)Lj

∂N(x)

∂xj
dv, (7)

K3(ϑ) =
⋃
e

∫
Ve

3∑
j=1

(N(x))
T
gj (Φ(ϑ))

T
LT
j Ce(x)LjΦ(ϑ)gT

j N(x) dv, (8)

M =
⋃
e

∫
Ve

(N(x))
T
ρe(x)N(x) dv, (9)

Wlm =
⋃
e

∫
∂Ve∈Γf

(N(x))
T
n3exp

(
iψT

lmx
)
ds. (10)

It is remarked that, in order to obey periodicity, Eq. (5) must be subjected

to appropriate periodic Dirichlet boundary conditions (PDBC) on the lateral

boundaries of the cell (see [5, 20] for further details).

Eq. (5) is configured as a nonlinear eigenvalue problem in the complex Bloch

wavenumber κ(ω, ϑ) for any fixed real positive frequency ω and assigned orien-80

tation ϑ ∈ [0, 2π], and it is solved in the present work by means of a contour

integral algorithm [21]. It should be noted that, while the real components of

k(ω, ϑ) are restricted to the first Brillouin zone (−π/dj ≤ Re(κj(ω, ϑ)) ≤ π/dj ,

j = 1, 2), the imaginary components, describing the wave decay in space along

the corresponding directions, are unbounded.85

Of fundamental importance in the solution of the dispersion equation is the

determination of the correct sign of κlm, which is a two-valued function of the

Bloch wavenumber κ(ω, ϑ). The choices of sgn(κlm) with physical meaning

depend on the behaviour of the spatial harmonic (l,m) in the acoustic region

[22] and are listed in Table 1.90
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3. Numerical applications

In order to validate the proposed method, a benchmark analysis is first

proposed for a homogeneous Titanium plate (ρ = 4460 kg/m3, C11 = 163.8 GPa,

C12 = 70.73 GPa, C44 = 46.53 GPa) of 10 mm thickness loaded with oil (ρf =

870 kg/m3, cf = 1740 m/s) on one side. The corresponding real wavenumber95

and attenuation dispersion curves in the 0−500 kHz frequency range are shown

in Fig. 2(a), where the continuous blue line indicates the analytical solution

computed using the software Disperse [23] while the red dots correspond to the

numerical solution obtained with the proposed method using a cell of 10×1×10

mm subdivided into 32 elements with quadratic shape functions (951 dofs),100

ϑ = 0 and assuming (l = −20 : 20, m = 0).

It can be observed that the two sets of solutions are in very good agreement

with the exception of the mode A0′′, which is hard to compute by the pro-

posed method at frequencies higher than 50 kHz due to numerical instabilities

occurring when κlm approaches κf . Further details on the physical behaviour105

of the various guided wave modes in the spectra can be found in [24, 25] and

are omitted here for the sake of brevity.

In the second numerical application, the Tungsten phononic crystal slab

(ρ = 19200 kg/m3, C11 = 502 GPa, C12 = 199 GPa, C44 = 152 GPa) with

embedded square cylindrical cavities presented in [26] is analyzed for the case110

of one side loaded by water (ρf = 998 kg/m3, cf = 1478 m/s). The external

dimensions of the cell are 1× 0.1× 1 mm, while the side length of the internal

square cavity is equal to 0.3mm. The band structures for the in-vacuum (blue

circles) and fluid-loaded (red dots) cases are shown in Fig. 2(b) in the 0 − 2

MHz frequency range for a mesh of 128 elements with quadratic shape functions115

(3168 dofs), ϑ = 0 and (l = −20 : 20, m = 0). In analogy with the fluid-loaded

homogeneous plate, also in this case the antisymmetric mode A0 separates in

two branches A0′ and A0′′, with the first belonging to the Fast Wave Region

(FWR) and thus radiating energy, while the second corresponds to a slow, non-

attenuated wave. It should be noted that the presence of the fluid does not120
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substantially alter the propagation constants of the remaining modes in the

spectra, with the original band gap in the 1.37 − 1.74 MHz frequency range

being preserved.

The third numerical experiment concerns a phononic crystal plate composed

of Aurum cylinders (ρ = 19300 kg/m3, C11 = 192.5 GPa, C12 = 163 GPa,125

C44 = 42.4 GPa) embedded in a epoxy matrix (ρ = 1180 kg/m3, C11 = 7.58

GPa, C12 = 4.42 GPa, C44 = 1.58 GPa) and loaded with water on one side.

The cell has dimensions 10× 10× 2.5 mm with the radius of the Au cylinders

equal to 0.3 mm, and is discretized by means of 216 elements with quadratic

shape functions (3867 dofs).130

The in-vacuum band structure for ϑ = 0 can be found in Ref. [27]-Fig. 2

(corresponding to the Γ − X direction in the first Brillouin zone) and is here

represented in Fig. 2(c) using blue circles, while the corresponding fluid-loaded

case, obtained for (l = −20 : 20, m = −20 : 20), is represented by red dots.

From the inspection of the band diagrams it appears that the presence of the135

fluid introduces some slight perturbations in the real component of the Bloch

wavenumber for modes M1 and M4, the latter exhibiting moderate attenuations

in the fast branch. The remaining radiating modes in the spectra are represented

by modes M7 and M8. In particular, the M8 branch for the fluid-loaded case

is not represented in the spectra since its attenuation values are comparable to140

those observed in the band gaps of the corresponding in-vacuum band diagram.

It can also be noted that, although modes M5 and M6 present fast branches,

their attenuation values in the FWR are close to zero due since they do not

experience significant displacements in direction 3.

Of particular interest is the presence of the new mode M9 in the diagram,145

which propagates in the frequency range corresponding to the band gap of the

in-vacuum case and corresponds to an interface and a bounded slow mode for

values of frequency lower and higher than 52 kHz, respectively.
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Figure 2: Dispersion curves of the oil-loaded Titanium plate (a) and band diagrams of the

water-loaded Tungsten slab (b) and Aurum-epoxy phononic plate (c). The shaded areas

correspond to the Fast Wave Regions (FWR).

4. Conclusions

A hybrid finite element-plane wave expansion method has been presented150

for the band diagrams calculation of fluid-loaded PC plates and benchmarked

against analytical solutions available for homogeneous plates.

From the computed band diagram of a water-loaded 1D PC Tungsten slab

with square cylindrical cavities, some analogies have been observed between the

physical behaviour of leaky Bloch waves and guided waves in the homogeneous155

plate. The case of a water-loaded 2D PC plate made of Aurum cylinders em-

bedded in a epoxy matrix has been also analyzed, for which a slow mode is

observed in the band gap region of the corresponding in-vacuum case.
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