Journal article Open Access

Band structure analysis of leaky Bloch waves in 2D phononic crystal plates

Mazzotti, Matteo; Miniaci, Marco; Bartoli, Ivan


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">phononic crystals, leaky Bloch waves, attenuation, band structure, finite element method, plane wave expansion method</subfield>
  </datafield>
  <controlfield tag="005">20200120171448.0</controlfield>
  <controlfield tag="001">1174339</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Le Havre, Laboratoire Ondes et Milieux Complexes, UMR CNRS 6294, 75 Rue Bellot, 76600 Le Havre, France</subfield>
    <subfield code="a">Miniaci, Marco</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">aCivil, Architectural &amp; Environmental Engineering Department, Drexel University, 3141 Chestnut St, Philadelphia, PA 19104, USA</subfield>
    <subfield code="a">Bartoli, Ivan</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">227250</subfield>
    <subfield code="z">md5:ab5c701c0688230cd37da4aa9954e41e</subfield>
    <subfield code="u">https://zenodo.org/record/1174339/files/3_Ultrasonics.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-02-16</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:1174339</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">140-143</subfield>
    <subfield code="v">74</subfield>
    <subfield code="p">Ultrasonics</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">aCivil, Architectural &amp; Environmental Engineering Department, Drexel University, 3141 Chestnut St, Philadelphia, PA 19104, USA</subfield>
    <subfield code="a">Mazzotti, Matteo</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Band structure analysis of leaky Bloch waves in 2D phononic crystal plates</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">658483</subfield>
    <subfield code="a">Smart phononic crystals for aircraft noise reduction</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;A hybrid Finite Element-Plane Wave Expansion method is presented for the&lt;br&gt;
band structure analysis of phononic crystal plates with two dimensional lattice&lt;br&gt;
that are in contact with acoustic half-spaces. The method enables the computation&lt;br&gt;
of both real (propagative) and imaginary (attenuation) components of&lt;br&gt;
the Bloch wavenumber at any given frequency.&lt;br&gt;
Three numerical applications are presented: a benchmark dispersion analysis&lt;br&gt;
for an oil-loaded Titanium isotropic plate, the band structure analysis of a waterloaded&lt;br&gt;
Tungsten slab with square cylindrical cavities and a phononic crystal&lt;br&gt;
plate composed of Aurum cylinders embedded in an epoxy matrix.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1016/j.ultras.2016.10.006</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
29
167
views
downloads
Views 29
Downloads 167
Data volume 38.0 MB
Unique views 27
Unique downloads 161

Share

Cite as