Working paper Open Access

Hybrid clustering/HMM constrained-based learning for Aircraft Trajectory Prediction

Harris Georgiou; Nikos Pelekis; David Scarlatti; Stylianos Sideridis; Yannis Theodoridis


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">trajectory prediction</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Big data analytics</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">mobility patterns</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">semantic clustering</subfield>
  </datafield>
  <controlfield tag="005">20190409133358.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">Intermediate technical report for work-in-progress (Oct/2017).</subfield>
  </datafield>
  <controlfield tag="001">1174083</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Data Science Lab, Univ. of Piraeus (UniPi), Greece</subfield>
    <subfield code="a">Nikos Pelekis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Boeing Research &amp; Technology Europe, Spain</subfield>
    <subfield code="a">David Scarlatti</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Data Science Lab, Univ. of Piraeus (UniPi), Greece</subfield>
    <subfield code="a">Stylianos Sideridis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Data Science Lab, Univ. of Piraeus (UniPi), Greece</subfield>
    <subfield code="a">Yannis Theodoridis</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1667556</subfield>
    <subfield code="z">md5:e9c63b34fe080c1ff950528a00c1f806</subfield>
    <subfield code="u">https://zenodo.org/record/1174083/files/Hybrid-clustering-HMM-final_20170216.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-02-16</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:1174083</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Data Science Lab, Univ. of Piraeus (UniPi), Greece</subfield>
    <subfield code="a">Harris Georgiou</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Hybrid clustering/HMM constrained-based learning for Aircraft Trajectory Prediction</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">687591</subfield>
    <subfield code="a">Big Data Analytics for Time Critical Mobility Forecasting</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">699299</subfield>
    <subfield code="a">Data-driven AiRcraft Trajectory prediction research</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution Non Commercial No Derivatives 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Abstract:&lt;/p&gt;

&lt;p&gt;Aircraft trajectory prediction (TP) is a challenging and inherently data-driven time-series modeling problem. Adding annotation parameters further increases the complexity of the search space, especially when &amp;lsquo;blind&amp;rsquo; optimization algorithms are employed. In this paper, flight plans, localized weather and aircraft properties are introduced as trajectory annotations (or semantics), which enable modeling in a space higher than the typical 4-D spatio-temporal domain. A two-phase hybrid approach is employed for the core TP task: (a) clustering using properly designed semantic-aware similarity functions as distance metrics; and (b) a hidden Markov model (HMM) for each cluster, using non-uniform graph-based spatial grid and exploiting flight plans as constraints for a parametric probabilistic model for the emissions. The proposed method is applied in real radar tracks and weather data for a one-month dataset of flights in Spanish airspace. Using parametric Gaussians as the base for the emissions model and confidence interval estimations for the associated errors, the proposed method exhibits exceptionally low HMM complexity and per-waypoint prediction accuracy of a few hundred meters compared with submitted flight plans.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.1174082</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.1174083</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">workingpaper</subfield>
  </datafield>
</record>
64
42
views
downloads
All versions This version
Views 6464
Downloads 4242
Data volume 70.0 MB70.0 MB
Unique views 5858
Unique downloads 3939

Share

Cite as