
Efficient Management of Data Models
in Constrained Systems by Using Templates

and Context Based Compression

Jorge Berzosa1(B), Luis Gardeazabal2, and Roberto Cortiñas2

1 IK4-Tekniker, Eibar, Spain
jorge.berzosa@tekniker.es

2 University of the Basque Country UPV/EHU, San Sebastián, Spain
{pedrojoseluis.gardeazabal,roberto.cortinas}@ehu.eus

Abstract. Data communication is at the heart of any distributed sys-
tem. The adoption of generic data formats such as XML or JSON
eases the exchange of information and interoperability among hetero-
geneous systems. However, the verbosity of those generic data formats
usually requires system resources that might not be available in resource-
constrained systems, e.g., embedded systems and those devices which
are being integrated into the so-called IoT. In this work we present a
method to reduce the cost of managing data models like XML or JSON
by using templates and context based compression. We also provide a
brief evaluation and comparison as a benchmark with current implemen-
tations of W3C’s Efficient XML Interchange (EXI) processor. Although
the method described in this paper is still at its initial stage, it outper-
forms the EXI implementations in terms of memory usage and speed,
while keeping similar compression rates. As a consequence, we believe
that our approach fits better for constrained systems.

Keywords: IoT · XML · JSON · Template · Context · Compression ·
EXI

1 Introduction

The current trend to integrate heterogeneous systems into a big network like
the Internet of Things (IoT) demands interoperable communication and data
models. Since many systems are composed of resource-constrained devices, a big
effort is being done to provide those systems with protocols and tools adapted
to their limitations. The general approach is to tackle the challenge at different
layers. For example, we can find IEEE 802.15.4 [6] for the media access control
layer, 6LoWPAN [10] in the case of the network layer and the Constrained
Application Protocol (CoAP) [11] at the application layer.

This work considers the representation of data, which could be located at
the presentation layer. Data can be represented by using many different formats.
In this work we will focus on semi-structured data models and, more precisely,
c© Springer International Publishing AG 2016
C.R. Garćıa et al. (Eds.): UCAmI 2016, Part II, LNCS 10070, pp. 332–343, 2016.
DOI: 10.1007/978-3-319-48799-1 38



Efficient Management of Data Models in Constrained Systems 333

W3C’s XML (Extensible Markup Language) as a main reference, even though we
could also consider other options such as JSON (JavaScript Object Notation).
XML is widely extended and is the basis for many web services and related
protocols, e.g., SOAP [5]. Roughly speaking, XML has been designed to be
human readable, with tokens and attributes codified as strings. Nevertheless, this
makes XML too large to be efficiently managed by resource-constrained devices
like embedded systems. Additionally, parsers need to deal with large amount
of string data, thus involving too much processing for energy and processor
constrained devices.

The efficient management of formatted data models would ease the native
use of Web Services and high level protocols and data models in resource-limited
IoT devices. This would enhance the application of self-* services family (self-
discovery, self-configuring, etc.) as well as overall interoperability. The benefits
for all IoT domains in general are clear but they are specially important for
consumer electronics targeted domains (domotics, entertainment, etc.) where
improved interoperability across services/vendors and increasing complexity and
richness of the interactions with the “smart” devices/environment would enhance
user experience.

Efficient XML Interchange, EXI [9], adopted as a recommendation by the
World Wide Web Consortium (W3C), relies on a binary representation of XML
Information Set. It is designed to provide a considerable reduction on the size
of the information in XML format (70–80 % as shown in [12]) and a high perfor-
mance when encoding/decoding (6.7 times faster decoding and 2.4 times faster
encoding according to [4]). In EXI a XML document is represented by an EXI
stream, which is composed of a header (containing encoding information) and a
body (representing the data). Data are represented based on formal grammars
to model redundancy. Interestingly, when the schema of the XML is available,
EXI achieves better results.

In this work we propose an approach based on templates. Roughly speaking,
templates are extracted from managed data model schema documents so that
their representation can be replaced in the data model instance documents with
a minimum number of references. The documents are then compressed (by using
lossless compression) following a context based grammar. The templates are
registered at running time and made available to the rest of the system. In
order to manage the data model documents, nodes will go through a preliminary
discovery phase, where required templates and identifiers are downloaded from
its location.

Outline. The paper is structured as follows; Sect. 2 presents the basis for tem-
plate based compression. Then, Sect. 3 discuss about the dissemination of the
templates in the system. A brief performance study compared to EXI is presented
in Sect. 4. Finally, Sect. 5 presents the conclusions of the paper and future work.



334 J. Berzosa et al.

2 Template Based Compression

Formatted data models can be represented by a tree graph encapsulating the
links between the elements and the attributes of those links (such as the cardi-
nality of the children showed in Fig. 1). In this work we define a grammar that
is able to describe the links between the elements and templates that compose a
formatted data model as well as the rules to follow in order to apply the gram-
mar for efficient encoding and decoding. The proposed method is intended to
be generic and not tied to a specific data description format (such as XML or
JSON).

Fig. 1. Formatted data model tree example. The numbers in the links denote the car-
dinality: “1” one child, “1..*” one to many children, “0..1” none or one child (optional).

Each data model is described by a specific schema. This schema is used
to extract the generic tree graph that is independent of the schema’s original
representation format. The tree graph is represented by a Schema Context that
contains all the relevant schema information including elements and links. The
generic grammar is used to process the Schema Context and execute the encoding
and decoding processes. A set of generic rules is defined to map a schema into
a Schema Context. However, these rules have to be specifically implemented for
each data format type as the mapping of the schema to a Schema Context is
data format specific.

2.1 Context Table and Schema Context

A Context Table contains all the information of the data model schemas known
to the node. Each entry of the Context Table is a Schema Context that contains
the information related to the elements and templates used in the schema, links
between elements and, in summary, all the information needed to process a data
model described by the schema. Figure 2 shows a detail of the Context Table of
the example shown in Fig. 1.

A Schema Context is identified by the URI and SchemaId attributes. The
URI attribute must be unique and is used to globally identify the Schema Con-
text. The SchemaId attribute is assigned in the node bootstrapping phase (as



Efficient Management of Data Models in Constrained Systems 335

Fig. 2. Example context table detail.

described later) and must be unique within the (sub-)network the Schema Con-
text is used.

A Schema Context contains the list of Element Contexts that describe the
elements of the schema. An Element Context has the following attributes:

– Id : the identifier of the element in the schema, which is denoted by its index
in the Schema Context element list.

– Template: a reference to the entry in the Template Table that contains the
template for this element.

– MultipleParents: true if the element is a child of more than one parent. false
otherwise.

– ContentType: the value of this attribute depends on the order the children
may appear in a data model instance. If the order of the children is fixed and
coincides with the order in which they are defined in the schema, the value is
fixed. If the order is random, the value is dynamic. Finally, if only one single
children can appear (among all the ones defined in the schema), the value is
choice.

– ChildElements: it contains the Child Context list.

Finally, Child Context is a tuple composed of the following attributes:

– Type: data type of the element. The data type can be either a basic type or
an element type. For the basic data type case the following types (inherited
from the EXI [9] specification) are supported: binary, boolean, decimal, float,
integer, date-time and string.

– IsOptional : true in case the cardinality of the child is 0..m, where m > 0, and
false otherwise.

– IsArray : true in case the child is an array, i.e., those children which have
cardinality n..m, where m > n ≥ 0.

– ElementId : if the Type attribute is element, ElementId contains the Id (i.e.,
the index) of this child‘s Element Context.

Table 1 shows the Element Contexts associated to the data model of the
example in Fig. 1.



336 J. Berzosa et al.

Table 1. Element Contexts example. Each column represents an Element Context. The
Type of all Child Contexts is element. The content of the ChildElements row represents
the tuple (IsOptional, IsArray, Id). F denotes fixed, D dynamic, f false and t true.

Atribute Id

root(0) A(1) B(2) C(3) D(4) E(5)

MultipleParents f f f f f t

ContentType F D F F F F

ChildElements
(f,t,1)

(t,f,2)

(f,f,3)

(t,f,4)

(f,t,5)

(t,f,5) () () ()

2.2 Template Table

The Template Table contains the list of templates known by the node. Basically,
templates are represented by using a custom format. They are strings which use
the @ symbol to denote place-holders. Each place-holder represents a child of the
element represented by the template.

In addition to the information about the template, each row also contains
context information in order to ease the matching between the original format
and the template, thus, improving and optimizing the searching and codification
processes.

2.3 Template Grammar

The Template Grammar allows processing data model elements by using the
information available in the Context Table.

Figure 3 shows the grammar, where Child0 . . . Childk−1 ∈ C, being C the
group of children of an element and k the number of children of the element.
The index i, 0 � i < k, denotes any children of C.

Fig. 3. Template grammar. k denotes the number of children (0 � i < k).



Efficient Management of Data Models in Constrained Systems 337

The production used for the left-hand Element depends on the value of the
attribute ContentType. If the value is fixed, the right-hand production Fixed-
Children is used. If instead the value is dynamic, the right-hand production
used will be DynamicChildren. Finally, if the value of ContentType is choice, the
right-hand production ChoiceChildren will be used.

The production for left-hand Child depends on the value of IsOptional and
IsArray attributes. In case both are false, only “ChildElement ε” is accepted.
The root element always should have IsOptional and isArray attributes to false.

Finally, the left-hand ChildElement contains the terminal symbols of the
basic types as well as the non-terminal symbol Element.

2.4 Context Table and Template Table Creation

As explained before, the Context Table contains the list of all the Schema Context
structures known by the node. Each Schema Context is created by processing
the data model schema. Also, as the schema is processed, each Element Context
is created strictly following the order in which the elements are defined.

When processing an element, the process checks whether it already exists
in the Schema Context. In case it does not exist, a new Element Context is
created, together with an unique Id identifier, and MultipleParents attribute is
set to false. In case the element already exists, MultipleParents is set to true.
Then, its attribute Template is assigned with the identifier of the associated
template in the Template Table.

In case (1) the order of appearance of children is fixed and (2) the appearance
matches the order defined in the schema, ContentType attribute is set to fixed. If
the appearance order of the children can be different, ContentType attribute is
set to dynamic. Finally, in case only one of the children can appear, ContentType
attribute is set to choice.

Once Element Context attributes have been set, children links are processed.
If the cardinality related to the child is 1, IsOptional and IsArray attributes are
set to false. If the child has cardinality n..m, where n = 0, isOptional is set to
true. If m > 1 then isArray is also set to true. Finally, the child type is added
to Type attribute. In case the child type is element, ElementId attribute is set
with the Id identifier of the associated Element Context.

Once all the schema has been processed and the Schema Context has been
created, a process called Context Collapsing is performed in order to reduce the
number of Element Contexts and Child Contexts without any loss of information.
Starting from the root node, if two or more siblings (nodes that share the same
parent) (1) are neither optional nor arrays (i.e., IsOptional=false and IsArray
= false), (2) they only have one parent (i.e., MultipleParents = false) and (3)
the order of the siblings is fixed (i.e., ElementContent attribute of the parent
is fixed), then the Element Contexts of the children are merged together. In a
similar way, if a parent and a child fulfill those same conditions, then the Element
Context of the child is merged with the Element Context of the parent.

Context Table and Template Table Example. We present an example of an Ele-
ment Context and Template Table generated from an XML Schema. To this end,



338 J. Berzosa et al.

we use the Notebook XML Document example proposed by Peintner et al. [8].
Figure 4 shows the original XML Schema of Notebook example.

Fig. 4. Notebook XML document schema.

Figure 5 shows the Template Table generated before collapsing (see Fig. 5a)
and after collapsing (see Fig. 5b). Also, Table 2 shows the Context table gener-
ated after collapsing1.

Table 2. Element Context example, after collapsing. The ContentType attribute of all
the elements is fixed. The content of the ChildElements row corresponds with the tupla
(Type, IsOptional, IsArray, ElementId). S denotes string, E element, D date-time, t
true and f false.

1 Context table before collapsing is available at [3].



Efficient Management of Data Models in Constrained Systems 339

Fig. 5. Schema example template table.

3 Template Management Configuration

3.1 Schema Register

Nodes need to know the templates (and their identifiers) associated with the
data models they are using. This information is made available in an initial
dissemination phase, in which Template Tables and Context Tables of the data
models are distributed.

When a node joins the network for the first time, it can start a schema
registration process. Schemas are registered in a centralized schema repository,
usually located at the gateway. Nodes use the URI of the data model schema to
register. When the gateway receives a registration request, it first checks whether
that schema is already registered. In that case, the associated SchemaId is
returned. If the URI is not registered yet, the gateway generates a new schemaId.

When registering a schema, an associated URL is provided so that its data
model schema can be accessed and downloaded. Schemas can be stored at a
node (see Fig. 6a) or at an external server (Fig. 6b). Once the gateway has down-
loaded a schema, it generates the Context Table and Template Table. As an effi-
ciency improvement, the schema repository could also pre-load a set of standard
schemas or download already pre-compiled Context Tables.

Note that constrained nodes only need to store the schemas of the data
models they actually use. Moreover, if the schemas can be accessed from an
external server, they can be totally stripped from the node.

In case a central schema repository were not available, nodes could select
proper identifiers based on point-to-point agreement. Optionally, distributed sys-
tem convergent algorithms could be used.



340 J. Berzosa et al.

Fig. 6. Template location. (a) at the Node, (b) at an external server.

After the registration process, the schemaId and Context Table are available
in the schema repository so that nodes can access them in their bootstrapping
phase.

4 Performance Evaluation

In this section we present two performance tests in order to compare context
based compression and EXI. In the first test, a set of XML instances are com-
pressed by using (a) EXIficient [2], an implementation of EXI, and (b) a prelimi-
nary implementation of the templates and context based compression approach.
In the second test, we study the performance of the decoding process using
as input the streams obtained from the previous test. In order to decode EXI
streams, another EXI implementation, EXIP [7], is used.

The set of XML documents used in the tests is composed of the netconf and
SenML instances (three documents each) used in the EXIP evaluation paper [7],
as well as the notebook XML instance used as an example in the EXI Primer
web page [8].

4.1 First Test: Encoding

In this test we compressed the XML instances using the EXIficient [2] implemen-
tation of EXI. In order to ensure fairness in the comparison, the encoding was
performed setting the schema strict option to true and all the preserve options
to false. The options were not included in the header of the encoded stream. For
the Context Based compression we created the Context and Template Tables
from the schemas and performed the encoding using the grammar presented in
this work. The results in terms of size are shown in Table 3.

Observe that results are very similar. It is interesting to note that in the case
of the SenML-01 document, EXI shows better compression results. The reason
lies in the fact that our proposal is not able to compress occurrences of strings
outside the schema, while EXI does not differentiate between strings belonging
to data and schema space.



Efficient Management of Data Models in Constrained Systems 341

Table 3. XML document compression comparative. Numbers are in bytes.

XML original EXIP CB

notebook 297 59 60

netconf-01 395 21 20

netconf-02 660 51 49

netconf-03 423 3 2

SenML-01 448 97 129

SenML-02 219 61 59

SenML-03 173 45 43

4.2 Second Test: Decoding

For the second test we decoded the EXI streams produced in the previous encod-
ing test using the EXIP v5.4 [1] implementation of EXI. Only decoding time has
been measured (grammar generation time has not been considered). In the case
of the context based approach, we used a preliminary implementation of the
Templates and Context Based compression to decode the same streams com-
pressed in the previous test.

We performed 1000 runs for each stream encoding in similar system load con-
ditions. Table 4 shows the results. Two columns are presented for each case. The
first one contains the non-optimized program (compiled with -O0) measurements
while the second one is the optimized program (compiled with -O3).

Table 4. XML document compression time comparative. Numbers are in milliseconds.

XML EXIP CB

notebook 25.3 23.1 15.0 13.8

netconf-01 28.6 24.4 7.9 6.8

netconf-02 38.4 32.0 15.4 13.1

netconf-03 30.1 25.7 7.5 6.4

SenML-01 38.7 33.6 23.7 19.7

SenML-02 25.6 22.2 16.1 14.3

SenML-03 20.5 18.3 14.0 12.5

Observe that decoding compressed streams is significantly faster2 in the case
of Context Based Compression. This is a direct result from using the simpler
grammar and structure of the Context and Template Tables compared to the
EXI specification.
2 This is very relevant for resource-constrained devices as sorter processing cycles

imply lower energy consumption.



342 J. Berzosa et al.

Regarding memory requirements, performed tests showed that RAM usage
by EXIP [7] was 23KB. In the case of Context Based Compression, the RAM
allocations of the Context and Template Tables for the notebook.xsd, senml.xsd
and netconf.xsd schemas were 565, 969 y 3611 bytes respectively. Also note that
the Context and Template tables are constant data so, for the most resource-
constrained devices, they could be stored and accessed from flash in order to
save RAM. Finally, the programming memory used by the core Context based
implementation was 7KB, while EXIP reported 79KB.

Results from the tests show that Context Based Compression performed
better in terms of processing time (31.3 %-75.2 % time reduction) and memory
usage (78.2 % less RAM and 89.9 % less program memory).

5 Conclusions

In this paper we have presented a context based compression technique that
can be applied to formatted data models. Context based compression allows
a better performance in the representation of data model structures, keeping
independence from the original format. Additionally, since templates are used,
different Template Tables can be applied to the same Context Table in order to
manage different representations, such as XML or JSON or even the same XML
document with different extensions (e.g. with or without comments).

We have shown that Templates and Context based compression provides
good performance results compared to EXI implementations. Context Based
Compression achieves better performance than EXI implementations in terms
of speed and memory usage, while keeping a similar efficiency in terms of space
in its better case (Schema Strict). Additionally, since templates are used, the
binding between the Schema Table and the original document is also achieved
in an speed efficient way.

On the other hand, the preliminary version of Templates and Context based
compression does not offer support for deviations from the data model schema.
As a consequence, data models can not be extended (for instance, for nesting
multiple data models) and extensibility attributes of the native formats (e.g.,
<any> and <anyAttribute> XML elements) are not currently supported, so
they are ignored in the parsing process.

As a future work, we are considering to improve Context based compression in
order to enable Schema Context extensions and nested data models. This mech-
anism would also allow assigning templates to dynamic parameters, improving
the compression of repeated values in the data space. We are also studying
the representation in the Context Table of constraints described in the schema.
This would improve the compression and the addition of partial validations of
the coded streams. Finally, one of our main objectives is to develop a modular
library which allows to be configured and customized to the resources of a given
system. This library will provide an API and required functions to manage the
formatted data in an efficient way. Additionally, we are also planning to develop
a toolbox which will automatically generate Context Tables and Template tables
from standard schema formats (such as XML and JSON schemas).



Efficient Management of Data Models in Constrained Systems 343

Acknowledgements. Research partially supported by the European Union Horizon
2020 Programme under grant 680708/HIT2GAP, by the Spanish Research Council,
grant TIN2013-41123-P, and the University of the Basque Country UPV/EHU, grant
UFI11/45.

References

1. Embeddable EXI processor in C (2016). http://exip.sourceforge.net/. Accessed
June 2016

2. Exificient (EXI procesor) (2016). http://exificient.github.io/. Accessed June 2016
3. Berzosa, J., Cortiñas, R., Gardeazabal, L.: Efficient management of data models in

constrained systems by using templates and context based compression. Technical
report, University of the Basque Country UPV/EHU, Computer Science Faculty
(Donostia, San-Sebastian) (2016). http://go.ehu.eus/BerzosaGC16-TR-05-16.pdf

4. Bournez, C.: Efficient XML interchange evaluation. Technical report, W3C (2009).
http://www.w3.org/TR/exi-evaluations/. Accessed June 2016

5. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.J., Frystyk Nielsen, H.: SOAP
version 1.2 part 1: messaging framework. Recommendation, W3C, June 2003.
http://www.w3.org/TR/2003/REC-soap12-part1-20030624

6. Gutierrez, J.A., Callaway, E.H., Barrett, R.: IEEE 802.15.4 Low-rate wireless per-
sonal area networks: enabling wireless sensor networks. IEEE Standards Office,
New York, NY, USA (2003)

7. Kyusakov, R., Punal Pereira, P., Eliasson, J., Delsing, J.: EXIP: a framework for
embedded web development. TWEB 8(4), 23:1–23:29 (2014). doi:10.1145/2665068

8. Peintner, D., Pericas-Geertsen, S.: Efficient XML interchange (EXI) primer (2014).
https://www.w3.org/TR/exi-primer/. Accessed June 2016

9. Schneider, J., Kamiya, T., Peintner, D., Kyusakov, R.: Efficient XML interchange
(EXI) Format 1.0 (2nd edn.). Technical report, W3C (2014). http://www.w3.org/
XML/EXI. Accessed June 2016

10. Shelby, Z., Bormann, C.: 6LoWPAN: The Wireless Embedded Internet. Wiley
Publishing, Hoboken (2010)

11. Shelby, Z., Hartke, K., Bormann, C.: The constrained application protocol (CoAP).
Technical report 7252, RFC Editor, Fremont, CA, USA, June 2014. http://www.
rfc-editor.org/rfc/rfc7252.txt

12. White, G., Kangasharju, J., Brutzman, D., Williams., S.: Efficient XML inter-
change measurements note. Technical report, W3C (2007). http://www.w3.org/
TR/exi-measurements/. Accessed June 2016

http://exip.sourceforge.net/
http://exificient.github.io/
http://go.ehu.eus/BerzosaGC16-TR-05-16.pdf
http://www.w3.org/TR/exi-evaluations/
http://www.w3.org/TR/2003/REC-soap12-part1-20030624
http://dx.doi.org/10.1145/2665068
https://www.w3.org/TR/exi-primer/
http://www.w3.org/XML/EXI
http://www.w3.org/XML/EXI
http://www.rfc-editor.org/rfc/rfc7252.txt
http://www.rfc-editor.org/rfc/rfc7252.txt
http://www.w3.org/TR/exi-measurements/
http://www.w3.org/TR/exi-measurements/

	Efficient Management of Data Models in Constrained Systems by Using Templates and Context Based Compression
	1 Introduction
	2 Template Based Compression
	2.1 Context Table and Schema Context
	2.2 Template Table
	2.3 Template Grammar
	2.4 Context Table and Template Table Creation

	3 Template Management Configuration
	3.1 Schema Register

	4 Performance Evaluation
	4.1 First Test: Encoding
	4.2 Second Test: Decoding

	5 Conclusions
	References


