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Abstract
Shielded execution based on Intel SGX provides strong secu-
rity guarantees for legacy applications running on untrusted
platforms. However, memory safety attacks such as Heart-
bleed can render the confidentiality and integrity properties
of shielded execution completely ineffective. To prevent these
attacks, the state-of-the-art memory-safety approaches can be
used in the context of shielded execution.

In this work, we first showcase that two prominent software-
and hardware-based defenses, AddressSanitizer and Intel
MPX respectively, are impractical for shielded execution due
to high performance and memory overheads. This motivated
our design of SGXBOUNDS—an efficient memory-safety
approach for shielded execution exploiting the architectural
features of Intel SGX. Our design is based on a simple com-
bination of tagged pointers and compact memory layout.

We implemented SGXBOUNDS based on the LLVM com-
piler framework targeting unmodified multithreaded appli-
cations. Our evaluation using Phoenix, PARSEC, and RIPE
benchmark suites shows that SGXBOUNDS has performance
and memory overheads of 17% and 0.1% respectively, while
providing security guarantees similar to AddressSanitizer
and Intel MPX. We have obtained similar results with SPEC
CPU2006 and four real-world case studies: SQLite, Mem-
cached, Apache, and Nginx.

1. Introduction
Software security is often cited as a key barrier to the adoption
of cloud services [6, 7, 75]. In this context, trusted execution
environments provide mechanisms to make cloud services
more resilient against security attacks [1, 53].

In this work, we focus on Intel Software Guard Extensions
(SGX) [53], a recently proposed set of ISA extensions for
trusted execution. Intel SGX provides an abstraction of se-
cure enclave— a memory region opaque to other software
including the hypervisor and the OS—that can be used to
achieve shielded execution for unmodified legacy applications
on untrusted infrastructure.

[Preprint. Original published by ACM.]

Shielded execution aims to protect confidentiality and
integrity of applications when executed in an untrusted envi-
ronment [19, 22]. The main idea is to isolate the application
from the rest of the system (including privileged software),
using only a narrow interface to communicate to the outside,
potentially malicious world. Since this interface defines the
security boundary, checks are performed to prevent the un-
trusted environment from attacks on the shielded application
in an attempt to leak confidential data or subvert its execution.

Shielded execution, however, does not protect the program
against memory safety attacks [74]. These attacks are wide-
spread, especially on legacy applications written in unsafe
languages such as C/C++. In particular, a remote attacker can
violate memory safety by exploiting the existing program
bugs to invoke out-of-bounds memory accesses (aka buffer
overflows). Thereafter, the attacker can hijack program control
flow or leak confidential data [14, 42].

To validate our claim, we reproduced many publicly avail-
able memory safety exploits inside the secure enclave (see
§7 for details), including the infamous Heartbleed attack in
Apache with OpenSSL [14] as well as vulnerabilities in Mem-
cached [12], Nginx [13], and in 16 test cases from the RIPE
security benchmark [80]. These examples highlight that a
single exploit can completely compromise the integrity and
confidentiality properties of shielded execution.

To prevent exploitation of these bugs, a number of memory
safety approaches have been proposed to automatically retrofit
bounds checking in legacy programs [17, 20, 26, 35, 55, 58].
Among these, we experimented with two prominent software-
and hardware-based memory protection mechanisms in the
context of shielded execution: AddressSanitizer [69] and Intel
Memory Protection Extensions (MPX) [9], respectively.

Unfortunately, these approaches exhibit high performance
and memory overheads, thus rendering them impractical for
shielded execution. For instance, consider the motivating ex-
ample of SQLite evaluated against the speedtest benchmark
(shipped with SQLite) with increasing working set items.
Figure 1 compares the performance and memory overheads
of SQLite hardened with AddressSanitizer and Intel MPX
running inside an SGX enclave.

The experiment shows that Intel MPX performs so poorly
that it crashes due to insufficient memory already after tiny
working set of 100 (corresponding to memory consump-
tion of 60MB for the native SGX execution). AddressSan-
itizer is more stable, but performs up to 3.1× slower than
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Figure 1: Performance and memory overheads of SQLite.

SGX on larger inputs (with virtual memory consumption of
700− 800MB for the native SGX execution). Additionally,
AddressSanitizer consumes 3.1×more virtual memory which
can quickly exhaust available memory inside the enclave.

These overheads illustrate a drastic mismatch between
memory needs of current memory-safety approaches and the
architectural limitations of Intel SGX (high encryption over-
heads and limited enclave memory, as explained in §2.1). In
particular, both AddressSanitizer and Intel MPX incur high
memory overheads due to additional metadata used to track
object bounds, which in turn leads to poor performance. (We
detail the reasons behind the SQLite overheads in §2.3.)

In this paper, we present SGXBOUNDS—a memory-safety
approach for shielded execution. Our design takes into account
architectural features of SGX and reduces performance and
memory overheads to the levels acceptable in production use.
For instance, in the case of SQLite, SGXBOUNDS outperforms
both AddressSanitizer and Intel MPX, with performance over-
heads of no more than 35% and almost zero memory overheads
with respect to the native SGX execution.

The SGXBOUNDS approach is based on a simple combina-
tion of tagged pointers and efficient memory layout to reduce
overheads inside SGX enclaves. In particular, we note that
SGX enclaves routinely use only 32 lower bits to represent
program address space and leave 32 higher bits of pointers un-
used.1 We utilize these high bits to represent the upper bound
on the referent object (or more broadly the beginning of the ob-
ject’s metadata area); the lower bound value is stored right after
the object. Such metadata layout requires only 4 additional
bytes per object and does not break cache locality—unlike
Intel MPX and AddressSanitizer. Additionally, our tagged
pointer approach requires no additional memory lookups for
simple loop iterations over arrays—one of the most common
cases for memory accesses [32].

Furthermore, we show that our design naturally extends for:
(1) “synchronization-free” support for multithreaded applica-

1 Current SGX implementations allow 36-bit address space. However, we be-
lieve that SGX enclaves spanning more than 4GB of memory are improbable.
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Figure 2: Memory hierarchy and relative performance
overheads of Intel SGX w.r.t. native execution [19].

tions, (2) increased availability instead of the usual fail-stop se-
mantics by tolerating out-of-bounds accesses based on failure-
oblivious computing [64, 65], and lastly, (3) generic APIs for
objects’ metadata management to support new use-cases.

SGXBOUNDS is targeted but not inherently tied to SGX
enclaves. Our approach is also applicable to programs that use
64-bit registers to hold pointers but can fit in 32-bit address
space. However, as we show in our evaluation, SGXBOUNDS
provides no tangible benefits in traditional, unconstrained-
memory environments in comparison to other techniques.

We implemented SGXBOUNDS as an extension to the
LLVM compiler with several optimizations for performance.
Our compiler framework targets unmodified legacy multi-
threaded applications and thus requires no source code modifi-
cations. We evaluated SGXBOUNDS using two multithreaded
benchmark suites, Phoenix and PARSEC, and four real-world
applications: SQLite, Memcached, Apache, and Nginx. On
this set of benchmarks, AddressSanitizer and Intel MPX
exhibit high performance overheads of 51% and 75% respec-
tively; memory consumption is 8.1× and 1.95× higher than
native SGX. In contrast, SGXBOUNDS shows an average
performance slowdown of 17% and an increase in memory
consumption by just 0.1%. At the same time, it provides
similar security guarantees. Additionally, we evaluated SGX-
BOUNDS on a CPU-intensive SPEC CPU2006 suite, both
inside and outside SGX enclaves.

2. Background and Related Work
2.1 Shielded Execution
Our work builds on SCONE [19], a shielded execution frame-
work to run unmodified applications. SCONE utilizes Intel
SGX to provide confidentiality and integrity guarantees.
Intel SGX is a set of ISA extensions for trusted computing
released with recent Intel processors [33, 53]. Intel SGX pro-
vides an abstraction of enclave—a memory region for which
the CPU guarantees confidentiality and integrity.

A distinctive trait of Intel SGX is the use of a memory
encryption engine (MEE). Enclave pages are located in the
Enclave Page Cache (EPC)—a dedicated memory region pro-
tected by the MEE (Figure 2). While in main memory, EPC
pages are encrypted. When such a page is accessed, the pro-
cessor verifies that the access originates from the enclave code,
fetches the requested data and copies it into the CPU cache.
The MEE performs decryption and verifies the integrity of the
data. This allows protecting enclaves from attacks launched
by privileged software (e.g., by the OS or hypervisor) as well
as from physical attacks (e.g., memory bus snooping), thus
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CF DO IL
Control Flow Integrity [27, 39, 52, 84] 4 8 8

Code Pointer Integrity [46] 4 8 8

Address Space Randomization [45, 48, 50, 68, 70] 4* 8 8

Data Integrity [16] 4 4 8

Data Flow Integrity [29] 4 4 8

Software Fault Isolation [39, 79] 4 4 4

Data Space Randomization [24, 28] 4* 4* 4*
Memory safety [9, 17, 20, 26, 35, 55, 58, 69] 4 4 4

*SGX enclaves do not provide sufficient bits of entropy in random offsets/masks

Table 1: Current defenses against attacks [74]. CF – control
flow hijack, DO – data-only attack, IL – information leak.

reducing the Trusted Computing Base (TCB) to the enclave
code and the processor.

The EPC is a limited resource and is shared among all
enclaves. Currently, the size of the EPC is 128 MB. Approxi-
mately 94 MB are available to the user while the rest is reserved
for the metadata. To enable creation of enclaves with sizes
beyond that of the EPC, SGX features a paging mechanism.
The operating system can evict EPC pages to an unprotected
memory using SGX instructions. During eviction, the page is
re-encrypted. Similarly, when an evicted page is brought back,
it is decrypted and its integrity is checked. Paging incurs high
overhead, from 2× for sequential memory accesses and up to
2000× for random ones [19].
SCONE is a shielded execution framework that enables un-
modified legacy applications to take advantage of the isolation
offered by SGX [19]. With SCONE, the program is recompiled
against a modified standard C library (SCONE libc), which
facilitates the execution of system calls. The address space of
an application is confined to only enclave memory, and the un-
trusted memory is accessed only via the system call interface.
Special wrappers copy arguments of system calls inside and
outside the enclave and provide functionality to transparently
cryptographically protect any data that might otherwise leave
the enclave perimeter in plaintext (so-called shields).

Clearly, the combination of SCONE and SGX is not a silver
bullet. As we showcase in §7, bugs in the enclave code itself
can render these mechanisms useless: we reproduced bugs in
Memcached, Nginx, and the infamous Heartbleed attack, all
inside the SGX enclave and running under SCONE. Thus, it
is necessary to defend against data leaks such that the attacker
cannot reveal confidential information even in the presence of
exploitable vulnerabilities.

To choose the right defense against information leaks, we
first discuss the applicability of state-of-the-art defenses for
shielded execution and SGX (based on the classification by
Szekeres et al. [74]). Table 1 highlights that most state-of-the-
art defenses target control-flow hijack attacks only. Even if a
proposed defense claims to protect against information leaks,
it usually implies that the attacker can obtain confidential
data in plaintext but cannot launch a hijacking attack based
on these leaks [21, 34, 70, 72, 73]. Also note that Address
Space Randomization (ASR) and its fine-grained variants
[31, 34, 41, 50] do not have sufficient bit entropy in SGX en-
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Figure 3: Memory protection mechanisms.

claves (recall that SGX restricts enclave address space to only
36 bits) and thus can be easily broken [70, 72]. Concurrent
and independent from our work, SGX-Shield investigated the
use of fine-grained ASR in the context of small enclaves [68].

Most of the listed approaches do not prevent information
leaks. The only exceptions are Software Fault Isolation (SFI)
[39, 79], Data Space Randomization (DSR) [24, 28] and
memory-safety techniques [17, 20, 35, 56, 58, 59, 67, 82].
Unfortunately, SFI requires manual separation of the enclave
address space into fault domains and is too coarse-grained to
guarantee high security (nevertheless, our preliminary evalu-
ation using Intel MPX instructions indicates overheads of 3%,
making it a viable low-cost alternative). DSR techniques rely
on a simple XOR mask to obfuscate data, and a determined
attacker can infer these masks by analyzing leaked data.

Therefore, we concentrate on memory-safety approaches
proved to completely prevent data leaks and other attacks [74].
These approaches prevent the very first step in any attack—
exploiting a vulnerability, such as overflowing a buffer or
freeing an already freed object. We must note that even though
we concentrate on memory safety, there are other, insider
attack vectors (orthogonal to our work) where a malicious OS
tries to deceive the shielded application [30, 60, 71, 83].

2.2 Memory Safety
The foundation of all memory attacks is getting access to a
prohibited region of memory [54, 77]. Hence, memory safety
can be achieved by enforcing a single invariant: memory
accesses must always stay within the bounds of originally
intended (referent) objects. For legacy applications written in
C/C++, this invariant is enforced by changing (hardening) the
application to perform additional bounds checks.

A number of memory-safety approaches have been imple-
mented either in software [17, 38, 58, 59, 69] or in hardware [9,
10, 47, 81]. We analyze two open-source and stable approaches
in order to put our own results into perspective: software-based
AddressSanitizer and hardware-based Intel MPX.
AddressSanitizer is an extension to GCC and Clang/LLVM
that detects the majority of object bounds violations [69]. It
keeps track of all objects, including globals, heap, and stack
variables, and checks whether the address is within one of
the used objects on each memory access. For that, it utilizes
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(a) Original
1 int *s[N], *d[N]
2

3

4 for (i=0; i<M; i++):
5 si = s + i
6 di = d + i
7

8

9

10 val = load si
11

12

13

14 store val, di
15

(b) AddressSanitizer
int *s[N], *d[N]
init_shadow(s, N)
init_shadow(d, N)
for (i=0; i<M; i++):

si = s + i
di = d + i
ssi = get_shadow(si)
if *ssi != 0:
crash(si)

val = load si
sdi = get_shadow(di)
if *sdi != 0:
crash(di)

store val, di

(c) Intel MPX
int *s[N], *d[N]
sbnd = bnd_create s
dbnd = bnd_create d
for (i=0; i<M; i++):

si = s + i
di = d + i

if bnd_check si, sbnd:
crash(si)

val = load si
val_bnd = bnd_load si
if bnd_check di, dbnd:

crash(di)
store val, di
bnd_store val_bnd, di

(d) SGXBOUNDS
int *s[N], *d[N]
s = specify_bounds(s, s + N)
d = specify_bounds(d, d + N)
for (i=0; i<M; i++):

si = s + i
di = d + i
sp, sLB, sUB = extract(si)
if bounds_violated(sp, sLB, sUB):

crash(si)
val = load si
dp, dLB, dUB = extract(di)
if bounds_violated(dp, dLB, dUB):

crash(di)
store val, di

Figure 4: Memory safety enforcement of original code in (a) via: (b) AddressSanitizer, (c) Intel MPX, and (d) SGXBOUNDS.

shadow memory – a separate memory region that stores meta-
data about main memory of an application (shown in pale-blue
in Figure 3a). In particular, shadow memory shows which re-
gions are allocated and used (i.e., safe to access) and which are
not. AddressSanitizer does that by allocating redzones around
all main memory objects and marking them inaccessible in the
shadow memory. Hence, if an application tries to read or write
out of object limits, this can be detected by checking the cor-
responding shadow address. On top of that, AddressSanitizer
provides a quarantine zone for freed objects, thereby detecting
temporal errors such as use-after-free and double free.

Execution of the hardened program is supported by a
run-time library that initializes the shadow region and re-
places memory management functions. It redefines memory-
allocation functions (e.g., malloc) to allocate redzones and
mark them unaddressable (poisoned) in shadow memory
and memory-deallocation functions (e.g., free) to poison the
whole object after it has been freed. The library also maps 1/8th
of virtual address space for the shadow memory at startup.

The hardening is performed by a compile-time instrumen-
tation pass. To understand how it works, consider an example
in Figure 4a, which copies elements of one array (“s” for
source) to another (“d” for destination). The first task of the
pass is to set metadata for global, heap, and stack variables.
In this example, it creates shadow objects for both arrays and
sets the redzones by calling init_shadow (Figure 4b, lines
2–3). The pass also enforces the memory access correctness
by computing the shadow addresses of all pointers (lines 7
and 11) and checking if they are within a redzone (lines 8 and
12). If a violation is detected, the application is crashed with
a debugging message (lines 9 and 13).

Intel MPX is a recent set of ISA extensions of Intel x86-64
architecture for memory protection [9]. By design, Intel MPX
detects all possible spatial memory vulnerabilities including
intra-object ones (when one member in a structure corrupts
other members). The approach to achieving this goal is differ-
ent from AddressSanitizer—instead of separating objects by
unaddressable redzones, Intel MPX keeps bounds metadata of
all pointers and checks against these bounds on each memory
access. Since metadata bookkeeping and checking is imple-

mented partly in hardware, such protection is supposed to be
highly efficient.

From the developer perspective, Intel MPX adds new 128-
bit registers for keeping upper and lower addresses (bounds)
of a referent object. It also provides instructions to check if a
pointer is within these bounds, along with instructions to ma-
nipulate them. To illustrate how Intel MPX works in practice,
consider an example in Figure 4c. After the objects are created
(line 1), their bounds have to be stored for future checks (lines
2–3). Then, on each memory access, we check if the accessed
address is within the bounds of the referent object (lines 8 and
12) and crash if the check fails (lines 9 and 13). Unlike Ad-
dressSanitizer, we have to copy not only the arrays’ elements
but also their bounds (lines 11 and 15), which causes additional
performance overhead. Note that this copying of bounds is re-
quired because the elements of arrays are pointers themselves.

One major limitation of the current Intel MPX implemen-
tation is a small number of bounds registers. If an application
contains many distinct pointers, it will cause frequent loads
and stores of bounds in memory. To make this interaction more
efficient, bounds are stored in tables with an index derived
from the pointer address, similar to a two-level page table
structure in x86: a 2GB intermediate table (Bounds Directory)
is used as a mediator to the actual 4MB-sized Bounds Tables,
which are allocated on-demand by the OS when bounds are
created (see Figure 3b). Thus, the constant memory overhead
is minimal and the total overhead depends mainly on the
number of pointers in the application.

Other memory-safety approaches. Apart from AddressSan-
itizer and Intel MPX, relevant memory-safety approaches
include Baggy Bounds [17] and Low Fat Pointers [37, 38].

Baggy Bounds [17] solves the problem of high memory
consumption and broken cache locality by enforcing allocation
bounds via buddy allocator. Thus, all objects become power-of-
two aligned, allowing simple and efficient checks against the
base and bounds. The approach maintains minimal metadata
for the bounds table, and the authors introduce tagged point-
ers with 5 bits holding the size. However, even with tagged
pointers Baggy Bounds incurs perceivable overheads: 70%
performance and 12% memory (on SPECINT 2000) [17].
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Low Fat Pointers [37, 38] are conceptually similar to Baggy
Bounds: they also introduce a special allocator that divides the
virtual address space in regions of fixed sizes and derive base
and bounds from the unmodified pointer. Overheads are also
comparable to Baggy Bounds: 54% performance and 12%
memory [38]. Yet, to support sparse memory regions, Low Fat
Pointers assume a complete 64-bit address space, incompat-
ible with the current version of SGX. Also, the prototype of
Low Fat Pointers protects only stack and heap but not globals.

Given their tagged-based nature and low memory con-
sumption, Baggy Bounds and Low Fat Pointers seem proper
candidates for usage in SGX enclaves. Unfortunately, neither
of them are publicly available.

2.3 Memory Safety for Shielded Execution
Now that we have covered the necessary background, we ex-
plain the overheads for the SQLite case study introduced in §1.

In the normal environment—outside of the SGX enclave—
Intel MPX exhibits performance overheads of up to 2.5× and
AddressSanitizer of up to 2.1× (not shown in Figure 1). These
are reasonable overheads expected from these approaches.

Inside the enclave the picture changes dramatically (Fig-
ure 1). Intel MPX crashes due to insufficient memory even on
tiny input sizes. The cause for this behavior is the amount of
bounds tables created to support pointer metadata (800−900
tables each 4MB in size), leading to memory exhaustion. We
should note however that SQLite is a worst-case example for
MPX since it is exceptionally pointer-intensive; pointerless
programs, e.g., those using flat arrays, perform significantly
better under MPX (see §6).

AddressSanitizer performs up to 3.1× slower than the na-
tive SGX execution on bigger inputs. Performance deteriorates
mainly due to the EPC thrashing caused by additional meta-
data accesses to shadow memory. Moreover, AddressSanitizer
also has a constant memory overhead of 512MB for shadow
memory plus some overhead for redzones around objects. This
can lead to situations when the application prematurely suffers
from insufficient memory.

For the same experiment, SGXBOUNDS shows perfor-
mance comparable to native SGX (30− 35% slower) with
almost no memory overhead. This motivates our case for a
specialized memory safety approach for shielded execution.

3. SGXBOUNDS

We built SGXBOUNDS based on the following three insights.
First, as shown in §2.1, shielded application memory (more
specifically, its working set) must be kept minimal due to the
very limited EPC size in current SGX implementations. This
is in sharp contrast to the usual assumption of almost endless
reserves of RAM for many other memory-safety approaches
[9, 17, 23, 38, 51, 56, 69]. Second, applications spend a con-
siderable amount of time iterating through the elements of an
array [32], and a smartly chosen layout of metadata can signifi-
cantly reduce the overhead of bounds checking. Third, we rely

UB pointer

LBobject

03163

Lower Bound Upper Bound

Figure 5: Tagged pointer representation in SGXBOUNDS.

on the SCONE infrastructure [19] with its monolithic build pro-
cess: all application code is statically linked without external
dependencies, which removes the requirements for compat-
ibility and modularity. The first and second insights dictate
the use of per-object metadata combined with tagged pointers
[17, 26] to keep memory overhead minimal, and thanks to
the monolithic application assumption, SGXBOUNDS avoids
problems of interoperability with uninstrumented code [74].

3.1 Design Overview
All modern SGX CPUs operate in a 64-bit mode, meaning that
all pointers are 64 bits in size. In SGX enclaves, however, only
36 bits of virtual address space are currently addressable [8],
and even this amount of space is not likely to be used due to
performance penalties. Thus, SGXBOUNDS relies on the idea
of tagged pointers: a 64-bit pointer contains the pointer itself
in its lower 32 bits and the referent object’s upper bound in the
upper 32 bits (Figure 5). Note that with SCONE, all applica-
tion code and data are stored inside the enclave address space
and thus all addressable memory is confined to 32 bits and all
original pointers can be replaced by their tagged counterparts.

The value stored in the higher 32 bits (UB) serves not only
for the upper-bound check, but also as a pointer to the object’s
other metadata (lower bound or LB). The metadata is stored
right after the referent object.

This metadata layout has important benefits: (1) it mini-
mizes amount of memory for metadata, (2) it requires no addi-
tional memory accesses while iterating over arrays with a posi-
tive increment, and (3) it alleviates problems of fat pointers con-
cerning multithreading and memory layout changes (see §4.1).

Figure 4d shows how SGXBOUNDS instruments mem-
ory accesses. First, global arrays s and d are initialized with
their respective bounds, and s and d pointers are transformed
into tagged pointers (lines 2–3). For the sake of clarity, we
show pointer increments on lines 5–6 uninstrumented (details
are in §3.2). Next, before the first memory access at line 10,
SGXBOUNDS inserts a bounds check. For this, the original
pointer value and its upper bound are extracted from the tagged
si as well as the lower bound, and the bounds check is per-
formed (lines 7–9). The second memory access (line 14) is
instrumented in the same way.

Looking at Figure 4, we can highlight the differences
between SGXBOUNDS, AddressSanitizer and Intel MPX. Un-
like AddressSanitizer, SGXBOUNDS does not rely on a vast
amount of shadow memory, allocating only 4 additional bytes
per object. Also, AddressSanitizer requires adjacent objects to
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be separated by fixed-size unaddressable redzones and checks
whether the memory access lands on one of these redzones.
In contrast, SGXBOUNDS extracts pointer bounds and com-
pares the current value of the pointer against them—similar
to Intel MPX. But unlike Intel MPX, SGXBOUNDS does not
maintain a bounds table and does not explicitly associate
each pointer with its own bounds metadata: the newly created
pointer implicitly inherits all associated metadata.

3.2 Design Details

Pointer creation. Whenever an object is created, SGX-
BOUNDS associates a pointer with the bounds of this object.

For global and stack-allocated variables, we change their
memory layout so they are padded with 4 bytes and initialize
them at run-time. More specifically, we wrap such variables
in two-member structures, e.g., int x is transformed into
struct xwrap {int x; void* LB} (similar to [69]). At pro-
gram initialization, we set the lower and upper bounds with
specify_bounds(&xwrap, &xwrap.LB):
void* specify_bounds(void *p, void *UB):

LBaddr = UB
*LBaddr = p
tagged = (UB << 32) | p
return tagged

For dynamically allocated variables, SGXBOUNDS wraps
memory-management functions such as malloc, calloc, etc.
to append 4 bytes to each newly created object, initialize these
bytes with the lower-bound value, and make the pointer tagged
with the upper bound:
void* malloc(int size):

void *p = malloc_real(size + 4)
return specify_bounds(p, p + size)

Note that there is no need to instrument free as the 4 bytes of
metadata are removed together with the object itself.

Lastly, a pointer can be assigned a value of another pointer.
If we would use fat pointers or pointers with disjoint metadata,
we would need to instrument such pointer assignments, as in In-
tel MPX (see Figure 4c). However, in SGXBOUNDS no instru-
mentation is needed, since the newly assigned pointer will also
inherit the upper bound and thus all associated object metadata.

Run-time bounds checks. SGXBOUNDS inserts run-time
bounds checks before each memory access: loads, stores, and
atomic operations (we revise this statement in §4.4). For this,
first the original pointer and the upper and lower bounds are
extracted. To extract the original pointer, it is enough to use
only the lower 32 bits:
void* extract_p(void* tagged):

return tagged & 0xFFFFFFFF

Similarly, to extract the upper bound, the higher 32 bits of the
tagged pointer must be extracted:
void* extract_UB(void* tagged):

return tagged >> 32

If a check against a lower bound is also required then this
bound is read from the memory at the upper-bound’s address:
void* extract_LB(void* UB):

return *UB

Finally, SGXBOUNDS adds the bounds check which crashes
the application in case the bounds are violated (in the imple-
mentation, we take into account the size of the accessed
memory while checking against the upper bound; here we
omit it for clarity):
bool bounds_violated(void* p, void* LB, void* UB):

if (p < LB or p >= UB):
return true

Pointer arithmetic. There is a subtle issue with tagged point-
ers when it comes to pointer arithmetic. Take, for example,
increment of a pointer as shown in Figure 4d, lines 5–6. In
the ordinary case, pointer arithmetic affects only the lower
32 bits of a tagged pointer. However, it is possible that a ma-
licious/buggy integer value overflows 32 bits and changes
the upper bound bits. In this case, the attacker can manipu-
late the upper bound value and bypass the bounds check. To
prevent such corner cases, SGXBOUNDS instruments pointer
arithmetic so that only 32 low bits are affected:
UB = extract_UB(si)
si = s + i
si = (UB << 32) | extract_p(si)

Type casts. Pointer-to-integer and integer-to-pointer casts are
a curse for fat/tagged pointer approaches. Some techniques
break applications with such casts [17, 44], others suffer from
worse performance or lower security guarantees [9, 26, 56].
Unfortunately, arbitrary casts are common in real-world [32].

SGXBOUNDS proved itself immune to arbitrary type casts.
It does not perform any instrumentation on type casts and
survives integer-to-pointer casts by design. Indeed, when a
tagged pointer is casted to an integer, the integer inherits the
upper bound. Unless the integer deliberately alters its high 32
bits, the upper bound will stay untouched and the later cast
back to a pointer will preserve this bound.

Function calls. SGXBOUNDS does not need to instrument
function calls or alter calling conventions. Unlike other ap-
proaches [9, 17, 26, 36, 56], SGXBOUNDS is not required
to interoperate with possibly uninstrumented, legacy code:
the only uninstrumented code is the standard C library (libc)
for which we provide wrappers. This implies that any tagged
pointer passed as a function argument will be treated as a
tagged pointer in the callee. In other words, bounds metadata
travels across function and library boundaries together with
the tagged pointer.

As already mentioned, we leave libc uninstrumented and
introduce manually written wrappers for all libc functions,
similar to other approaches [9, 17, 56, 69]. Most wrappers
follow a simple pattern of extracting original pointers from
the tagged function arguments, checking them against bounds,
and calling a real libc function. Others require tracking and
extracting the pointers on-the-fly (e.g., the printf family),
writing proxies for callbacks (qsort), or iterating through
complex objects (scandir).
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4. Advanced Features of SGXBOUNDS

4.1 Multithreading support
Bounds checking approaches usually hamper multithreaded
applications. AddressSanitizer does not require any specific
treatment of multithreading, but, as we illustrate in §6.4, it
can negatively affect cache locality if a multithreaded appli-
cation was specifically designed as cache-friendly (recall that
AddressSanitizer inserts redzones around objects). On the
other hand, current implementations of Intel MPX instrumen-
tation may suffer from false positives and false negatives in
multithreaded environments, introducing a possibility of false
alarms or, even worse, of undetected attacks [32, 61].

In fact, all fat-pointer or disjoint-metadata techniques sim-
ilar to Intel MPX suffer from multithreading issues [32, 57].
An update of a pointer and its associated metadata must be
implemented as one atomic operation which requires some
synchronization mechanism. This inevitably hampers perfor-
mance as this is necessary for each pointer/metadata update.

For example, in Figure 4c, lines 10–11, the pointer val and
its bounds metadata val_bnd are copied to di. After the first
thread loaded val on line 10, the second thread can jump in and
change val to point to some other object. This will also change
val_bnd. Next, the first thread continues its execution and
loads the wrong val_bnd on line 11. Now val and val_bnd

do not match, which might result in a false positive. This is a
realistic failure scenario for current implementations of Intel
MPX since it does not enforce atomicity of metadata updates.2

SGXBOUNDS does not experience this problem. Indeed,
the pointer and the upper bound are always updated atomi-
cally since they are stored in the same 64-bit tagged pointer.
Additionally, the lower bound is written only once (at object
creation) and is read-only for the whole object’s lifetime.

4.2 Tolerating Bugs with Boundless Memory
Up to this point, we assumed that an application crashes with
a diagnostic error whenever SGXBOUNDS detects an out-of-
bounds access. This fail-fast strategy is simple and prevents
hijacks and data leaks, but lowers availability of the system.
Even in benign cases of off-by-one buffer overflows, the whole
application is crashed and must be restarted.

To allow applications to survive most bugs and attacks and
continue correct execution, SGXBOUNDS reverts to failure-
oblivious computing [65] by using the concept of boundless
memory blocks [64]. In this case, whenever an out-of-bounds
memory access is detected, SGXBOUNDS redirects this access
to a separate “overlay” memory area to prevent corruption
of the adjacent objects, creating the illusion of “boundless”
memory allocated for the object (see Figure 6).

This overlay area is implemented as a bounded least-
recently-used (LRU) cache—a hash table that maps out-of-
bounds memory addresses to spare chunks of memory (similar

2 We demonstrate how multithreaded code fails in MPX and discuss this and
other issues in more detail in our technical report on Intel MPX [61].

LRU cache

victim objectLBreferent object

p
out -of -bounds 
access

chunk
chunk

chunk
redirect
access

maps al igned(p)  ->  chunk

Figure 6: Boundless memory blocks for SGXBOUNDS.

to [64]). These chunks are allocated on-demand, each being
1KB in size. The whole LRU cache is bounded, i.e., it cannot
grow more than a certain predefined size (in our implemen-
tation, 1MB). This is required to prevent bugs and attacks
that span gigabytes of out-of-bounds memory—a frequent
consequence of integer overflows due to negative buffer sizes.

Consider an example of a classical off-by-one bug from
Figure 4d. If M is greater than N by one, the last iteration of the
loop will trigger bound violations on lines 8 and 12.

With boundless memory feature enabled, SGXBOUNDS
consults the LRU cache and redirects the load from si (line
10) to a load from an overlay address that corresponds to si. If
there is no hit for si in the cache, SGXBOUNDS falls back on
a failure-oblivious approach and simply returns zero values.

Additionally, SGXBOUNDS redirects the store to di (line
14) to a corresponding overlay address. If there is no overlay ad-
dress in the LRU cache, then a new chunk of overlay memory is
allocated and is associated with this address. If there is no space
left for a new chunk in the LRU cache, the least recently used
chunk is evicted (freed) and the new chunk is added instead.

4.3 Metadata Management Support
So far, we discussed only one metadata type kept per object—
the lower bound (see Figure 5). However, our memory layout
allows us to add arbitrary number of metadata items for each
object to implement additional functionality.

All instrumentation in SGXBOUNDS is implemented as
calls to auxiliary functions described in §3.2, which we refer
to as instrumentation hooks. One can think of these hooks as
a metadata management API (see Table 2). The API consists
of only three functions: (1) on_create is called at run-time
whenever a new object is created, either a global variable
during program initialization or a local variable during stack
frame creation or a dynamically allocated variable, e.g., via
malloc. In the context of SGXBOUNDS, it corresponds to the
specify_bounds function which initializes our only metadata
(lower bound). (2) on_access is called at each memory access,
be it a write, read, or both (for atomic instructions such as
compare-and-swap). In SGXBOUNDS, the hook roughly cor-
responds to the bounds_violated function. (3) on_delete
is called whenever an object is deallocated; we support this
hook only for heap-allocated objects, since global variables
are never deleted and there is no way to track deallocation
of variables on stack. SGXBOUNDS does not use this hook
because we do not focus on temporal safety (also note that the
metadata is removed automatically with the object).
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on_create(objbase, objsize, objtype)
called after object creation (globals, heap, or stack)

on_access(address, size, metadata, accesstype)
called before memory access (read, write, or read-write)

on_delete(metadata)
called before object destruction (only for heap)

Table 2: SGXBOUNDS metadata management APIs.

With this API, it is straightforward to implement additional
functionality. For example, SGXBOUNDS can be expanded to
probabilistically protect against double-free bugs using an ad-
ditional metadata item acting as a “magic number” to compare
with. Another example would be providing debug information
about where a detected out-of-bounds access originates from.

4.4 Optimizations

Safe memory accesses. Many pointer arithmetic operations
and memory accesses are always-safe. For example, the cal-
culation of the member’s offset in a structure is guaranteed to
be in-bounds and never overflows 32 low bits. The memory
access at a predefined index in a fixed-size array is also safe.

In these cases, there is no need for instrumentation of
pointer arithmetic or bounds checks on memory accesses.
We employ the built-in compiler analysis to detect all safe
cases and do not instrument them. This is a standard optimiza-
tion for many approaches [17, 36, 69] and yields significant
performance gains for some applications, up to 20% (§6.5).

Hoisting checks out of loops. Many programs spend a lot
of time iterating over arrays in simple loops. The array-copy
example in Figure 4a is a good illustration.

The straightforward instrumentation with SGXBOUNDS, as
depicted in Figure 4d, inserts bounds checks before each mem-
ory access (on lines 7–9 and 11–13). It is immediately obvious
from the code that the lower-bound check is useless: si and
di start from the base addresses of the corresponding arrays
and increment on each iteration. Thus, it is safe to remove the
check against the lower bound, which renders the extraction
of the lower bound redundant. In the end, this optimization
can save two memory accesses per iteration (to extract LBs).

The upper-bound check cannot be removed: in general case
the value of M is unknown and can exceed the upper bound
of the two arrays (N). But it is sufficient to perform only one
check for each array outside of the loop, namely, the check of
s+M and of d+M against their respective upper bounds.

Such optimization is applied only for loops with small
increments (up to 1,024 bytes) – which is virtually all loops en-
countered in regular applications. We mark the last 4K page of
an enclave as unaddressable, which protects from integer over-
and underflows of the loop counter variable. These simple pre-
cautions protect against overflowing pointer arithmetic inside
loops when lower- or upper-bound checks are hoisted out.

To perform these optimizations, we reused classical scalar
evolution analysis. We observed performance gains of up to
22% in some cases (§6.5).

5. Implementation
5.1 SGXBOUNDS Implementation
SGXBOUNDS is a compile-time transformation pass imple-
mented in LLVM 3.8. For greater modularity, we implement
the functionality outlined in §3.2 as always-inlined functions
in a separate C file. The pass inserts calls to these functions
during instrumentation. We refer to this set of auxiliary C
functions as the run-time for SGXBOUNDS.

We do not alter the usual build process of an application,
but rather use the Link-Time Optimization feature of LLVM.

Compiler support. SGXBOUNDS compiler pass works under
LLVM 3.8 [49] and was implemented in 951 lines of code
(LOC). Its functionality closely follows the description in §3.

We treat inline assembly as an opaque memory instruction:
all pointer arguments to inline assembly are bounds checked.
To minimize the risk of misbehaving assembly, we disabled
inline assembly in all tested applications which had such a flag.

To support C++, we opted to instrument the whole C++
standard library. We used libcxx (libc++) implementation for
this purpose. SGXBOUNDS does not yet completely support
C++ exception handling: it runs C++ applications correctly
only if they do not throw exceptions at run-time.

Run-time support. Next we describe implementation details
of the SGXBOUNDS auxiliary functionality. The complete
implementation of the run-time functions spans 320 LOC, and
the libc wrappers contain 4289 LOC.

We implemented boundless memory feature (§4.2) com-
pletely in the run-time support library in 68 LOC. It is based
on uthash lists which we extend to a simple LRU cache [15].
To prevent data races, all read/update operations on the cache
are synchronized via a global lock. Such implementation is
slow, but since it is triggered on supposedly rare events of
out-of-bounds memory accesses (and thus it lies on a slow
path), we can ignore this possible performance bottleneck.

Furthermore, SGXBOUNDS does not fall back to a fail-
ure oblivious approach for libc function wrappers, but rather
returns an error code through errno where applicable (e.g.,
EINVAL for the recv function). This allows applications to
quickly drop offending requests.

For the tagged pointer scheme, SGXBOUNDS relies on
SGX enclaves (and thus the virtual address space) to start
from 0x0. To allow this, we set the Linux security flag
vm.mmap_min_addr to zero for our applications. We also mod-
ified the original Intel SGX driver (5 LOC) to always start the
enclave at address 0x0.

5.2 AddressSanitizer, Intel MPX, and SGX Enclaves
To integrate AddressSanitizer and Intel MPX into SGX en-
claves, we had to solve three main issues. (1) SCONE disallows
dynamic linking against shared libraries, so AddressSanitizer
and Intel MPX must be compiled statically into the application.
(2) The virtual address space is restricted to 32 bits. (3) The
OS is not allowed to peek into the address space of the enclave.
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Adapting AddressSanitizer for SGX enclaves. We had to
solve issues (1) and (2) for AddressSanitizer. First, the cur-
rent implementation of AddressSanitizer relies on libc being
dynamically linked at application start-up (the usual function
interposition scheme). Trying to statically link libc into the
application would result in a compilation error due to multiple
definitions of the same function.

Every function in SCONE libc has an alias (a second name
which is used to denote the real function). We modified the
interception layer of AddressSanitizer such that its wrapper
functions call aliases (real libc functions), therefore solving
the problem of multiple definitions. This is similar to SGX-
BOUNDS (see malloc in §3.2).

Second, by default AddressSanitizer is compiled in 64-bit
mode and reserves∼16TB of memory for its shadow space.
Fortunately, it also has a 32-bit mode where only 512MB
of memory is carved for shadowing. We changed the build
system of AddressSanitizer to always use the 32-bit mode.
Also, we disabled “leak detection” flag that broke SCONE.

Adapting Intel MPX for SGX enclaves. To put Intel MPX
inside SGX, we solved issues (2) and (3). Intel MPX operates
in the 64-bit mode, and this affects its address translation to
store and load bounds (Figure 9 in [9]). In the 64-bit mode,
Intel MPX allocates a 2GB Bounds Directory (BD) table at
start-up and 4MB-sized Bounds Tables (BT) on-demand.

We discovered that this address translation also works with
32-bit addresses. In the 32-bit address case, only 12 bits are
used for indexing in the BD table, and the rest for BT tables.
Thus, we were able to restrict the size of BD to 32KB by
changing the corresponding constants in the MPX compiler
pass and run-time libraries. We did not change the address
translation logic of BT allocation.

For issue (3), we had to move the kernel logic into the SGX
enclave. In the normal case, on-demand allocation of BTs
requires support from the Linux kernel. Whenever an applica-
tion fires a “bounds store” exception (meaning the application
needs to allocate a new BT to store some pointer metadata), the
kernel handles it: it examines the pointer address that raised
the exception, calculates the correct BT, and allocates it on
behalf of the application. Then the execution of the application
continues, and the metadata is stored in the newly allocated BT.

This kernel-application cooperation is impossible in SGX.
The kernel cannot examine the failing pointer and cannot peek
into or modify memory inside the SGX enclave. To alleviate
this problem, we moved all the BT-allocation logic from the
kernel into the Intel MPX run-time library. We also instructed
the kernel not to try to cooperate with the application, but only
to forward the exception to the application itself. At this point
the enclave takes control and handles the exception. Note that
this logic does not compromise security because SGX double-
checks the exceptions forwarded by the kernel. Our adaptation
also does not influence performance since BT-allocation is
a rare event, and the kernel-to-application forwarding adds
negligible overhead.

6. Evaluation
Our evaluation answers the following questions:
• What are the performance and memory overheads of SGX-

BOUNDS and how do they compare to AddressSanitizer
and Intel MPX? (§6.2)

• How does the increasing working set affect the perfor-
mance of SGXBOUNDS? (§6.3)

• How does multithreading affect the performance? (§6.4)
• How effective are the optimizations in improving the per-

formance? (§6.5)
• What level of security is achieved by SGXBOUNDS accord-

ing to the RIPE benchmark? (§6.6)
• How does the performance of SGXBOUNDS change out-

side of SGX enclaves? (§6.7)

6.1 Experimental Setup

Applications. We evaluated SGXBOUNDS using Fex [62]
with applications from two multithreaded benchmark suites:
Phoenix 2.0 [63] and PARSEC 3.0 [25], as well single-
threaded SPEC CPU2006 [43]. We report results for all 7
applications in the Phoenix benchmark, 9 out of 13 applica-
tions in PARSEC, and 13 out of 19 in SPEC. The remaining
applications are not supported for the following reasons: ray-
trace depends on the dynamic X Window System libraries not
shipped together with the benchmark; freqmine is based on
OpenMP, facesim and canneal fail to compile under SCONE
due to position-independent code issues, dealII, omnetpp,
and povray fail due to incomplete support of C++, perlbench
triggered an unsupported corner case of a specific loop opti-
mization, and gcc and soplex violate C memory model and
cannot be protected via bounds-checking [61].

Methodology. In all experiments (except §6.3) the numbers
are normalized against the native SGX version, i.e., a version
compiled under the SCONE infrastructure and not instru-
mented with any memory-safety techniques. For all measure-
ments, we report the average over 10 runs and geometric
mean for the “gmean” across benchmarks. For memory mea-
surements, since the Linux kernel does not provide statistics
on the Resident Set Size inside SGX enclaves, we show the
maximum amount of reserved virtual memory.

Testbed. We used the largest available datasets provided by
Phoenix, PARSEC, and SPEC benchmark suites. The exper-
iments were carried out on a machine with a 4-core (8 hyper-
threads) Intel Xeon processor operating at 3.6 GHz (Skylake
µarchitecture) with 64GB of RAM, a 1TB SATA-based SDD,
and running Linux kernel 4.4. Each core has private 32KB L1
and 256KB L2 caches, and all cores share a 8MB L3 cache.

Compilers. We used LLVM 3.8 for native SGX, AddressSan-
itizer, and SGXBOUNDS versions and gcc 5.3 for the Intel
MPX version. We use default options for AddressSanitizer but
disable leak detection (see §5.2). We also disable “narrowing
of bounds” feature in Intel MPX to remove false positives in
some programs.
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Figure 7: Performance (top) and memory (bottom) overheads over native SGX execution (with 8 threads).

6.2 Performance and Memory Overheads
Figure 7 shows performance and memory overheads of In-
tel MPX, AddressSanitizer, and SGXBOUNDS normalized
against the uninstrumented SGX version. All benchmarks
were run with 8 threads to fully utilize our machine.

Performance overheads of Intel MPX significantly vary
across benchmarks, reaching up to 5−6× in some cases. For
example, consider pca. Its working set is 70MB (77MB for In-
tel MPX due to additional metadata), thus all data fits into EPC
and performance is dominated by the on-die characteristics
like CPU cache accesses and number of retired instructions.
Indeed, Intel MPX leads to 10×more instructions, 5×more
branches, and 25× more L1 cache accesses (pca operates
on a large array-of-pointers and is thus pointer-intensive).
Together, this leads to an overhead of 6.3×. On the other hand,
pointer-free benchmarks like histogram and blackscholes ex-
hibit almost zero overhead (observe that memory overheads
in these cases are also close to zero).

Memory overheads of Intel MPX also vary. For bench-
marks working with large arrays and/or using no pointer-based
structures (almost all Phoenix benchmarks), pointer bounds
metadata occupies relatively small amount of space and over-
heads are negligible. However, for pointer-intensive cases like
bodytrack and fluidanimation, Intel MPX allocates a lot of
metadata, leading to∼4×memory overhead. In degenerate
cases, overheads can reach up to 13× (swaptions) or even
crash the application (dedup, note the missing MPX bar).

AddressSanitizer has more reasonable and expected per-
formance overhead of around 51%.3 The kmeans benchmark
has one of the highest overheads of 2.2×. Since the working
set of kmeans is only 5MB (AddressSanitizer blows it up to
643MB but does not use most of it), the overhead is dominated
by the CPU instructions and cache: 2.4×more instructions,
2.6×more branches, and 2.2×more L1 cache accesses.

In terms of memory usage, AddressSanitizer is a poor
choice for SGX enclaves. By reserving 512MB of memory

3 Except dedup which performs better than the baseline SGX version. Our
investigation revealed that AddressSanitizer accidentally changes the memory
layout of dedup such that it has much less LLC cache misses at runtime.

for its shadow space, AddressSanitizer reduces the available
memory to 3.5GB (§2.2). Moreover, AddressSanitizer pads
objects with redzones and uses so-called “quarantine” which
obstructs reuse of memory [69]. All this can lead to memory
blow-ups of 50−100×.

The most dramatic example of memory overheads is swap-
tions. This benchmark has a working set of only 3.3MB, but
it constantly allocates and frees tiny objects. For Intel MPX, it
results in a flood of pointers and a constant need for more and
more bounds tables (12 BTs or 48MB). For AddressSanitizer
with its quarantine feature, the reuse of memory is restricted
and new objects are allocated in more and more pages (103,250
pages or 413MB). Note that the excessive amount of metadata
does not seriously hamper performance of Intel MPX because
the working set still fits into EPC, but AddressSanitizer suffers
from EPC thrashing and thus exhibits poor performance.

Finally, SGXBOUNDS performs the best, with an average
performance overhead of 17% and average memory overhead
of 0.1%. In comparison to Intel MPX, SGXBOUNDS does not
choke on pointer-intensive programs (pca, wordcount, x264).
In comparison to AddressSanitizer, SGXBOUNDS has much
better memory consumption. It also does not exhibit corner-
case performance drops like AddressSanitizer in swaptions
and does not eat up all memory like Intel MPX in dedup.

6.3 Experiments with Increasing Working Set
To understand the behavior of different approaches with in-
creasing sizes, we created five input sizes ranging from tiny
(XS) to extra-large (XL) for several benchmarks (Figure 8).
Note that we normalize against SGXBOUNDS for clarity;
SGXBOUNDS itself performs∼15% worse than native SGX
and has a maximum deviation of 2.1% across different sizes.
We observed different patterns across approaches and bench-
marks. In most cases, increasing the size did not influence the
overheads of AddressSanitizer and Intel MPX in comparison
to SGXBOUNDS, indicating no changes in memory access pat-
terns due to CPU cache or EPC thrashing. Next, we elaborate
on the patterns for some other cases.
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Figure 8: Performance overheads over SGXBOUNDS execution with increasing sizes of working sets (with 8 threads).

Working set (MB) LLC misses (%) Page Faults (×) # of
ASan MPX ASan MPX BTs

kmeans
XS (17) 5.8 -0.3 3.9 1.2 6
S (34) 12.4 1.3 3.1 2.0 9
M (68) 17.2 9.7 3.9 44 15
L (135) 19.7 1.3 1.2 2.9 27
XL (270) 11.3 1.5 1.2 1.9 52

matrixmul
XS (2) 1.7 1.0 9.4 1.5 1
S (7) -0.5 -1.2 5.8 1.4 1
M (26) -3.6 -13.8 2.9 1.2 1
L (103) 125 -11.5 1.9 1.0 1
XL (412) 4367 -0.1 1.2 1.0 1

Table 3: Overheads w.r.t. SGXBOUNDS for experiment of
increasing working set size. Col. 4–5: page faults due to EPC
thrashing. Col. 6: num. of bounds tables allocated in MPX.

Kmeans has the following pattern: the overheads over SGX-
BOUNDS grow until a certain point (“M”), reach a maximum
and then drop. Looking at Table 3, we note that the working
set fits completely in EPC at first and then spills out to RAM at
large inputs. This means that before the “L” value, overheads
are dominated by the on-die characteristics, and after it by
the paging mechanism. In the case of kmeans—a benchmark
which iteratively goes through its working set—the number of
page faults explains the spikes and subsequent drops in both
Intel MPX and AddressSanitizer.

Note the outlier number of page faults for “M” in Intel MPX:
the working set increases to 127MB due to bounds tables. At
the same time, the original SGX version and SGXBOUNDS
both have the working set of 68MB. Thus, SGXBOUNDS fits
completely into EPC while Intel MPX must evict and load-
back pages (AddressSanitizer also has a working set that fits
into EPC). Since such constant EPC thrashing is expensive
(§2.1), performance of Intel MPX becomes 8.3×worse.

On “L” and “XL” sizes, all approaches do not fit into EPC
and experience EPC thrashing, and this dominates the perfor-
mance overheads of all of them. Note how the number of page
faults from Table 3 correlates with the overhead in Figure 8.

Matrixmul performs a simple (cache-unfriendly) multiplica-
tion of two matrices and writes the result into a third matrix.

Intel MPX performs on par with SGXBOUNDS. Looking
at the number of bounds tables allocated (Table 3), we see
that only one table was enough for any input size. This is
trivially explained by the fact that matrixmul requires only
three bounds entries—one for each matrix. Moreover, Intel
MPX holds these bounds in CPU registers such that there are
no additional memory accesses and thus no overhead.

Note that matrixmul exhibits sequential pattern of memory
accesses. This implies that even when the working set does
not fit in EPC, there is no EPC thrashing (old EPC pages are
evicted and never accessed again) – in other words, page faults
do not dominate performance overheads. In this scenario, CPU
cache misses play a major role. AddressSanitizer breaks cache
locality since it inserts additional accesses to shadow memory.
On “XL” size, this effect is exacerbated by matrices not fitting
in EPC, leading to 44×more LLC cache misses. This explains
the 40× spike in overhead in Figure 8.

6.4 Effect of Multithreading
As discussed in §4.1, SGXBOUNDS supports multithreading
by design. To highlight the fact that SGXBOUNDS does not im-
pose additional performance overhead with more threads, we
conducted an experiment with one and four threads (Figure 9).
Also, the overheads with 8 threads are shown in section 6.2.
We compare SGXBOUNDS with AddressSanitizer which also
has an efficient support for multithreading. We do not com-
pare against Intel MPX since it lacks real support for multi-
threading; we believe that future versions of MPX might have
deteriorated performance due to synchronization overheads.

On average, overhead of AddressSanitizer increases from
35% with one thread to 49% with four threads while overhead
of SGXBOUNDS decreases from 17% to 16%. In most cases
however, both SGXBOUNDS and AddressSanitizer do not
exhibit any additional overhead. This is reasonable since both
approaches do not require additional synchronization primi-
tives and introduce lightweight wrappers around pthreads.

However, AddressSanitizer can break (1) memory layout
due to redzones around objects, and (2) cache locality due
to additional memory accesses to shadow memory. This hap-
pens in matrixmul: AddressSanitizer worsens cache locality
on four threads and has 6.7× more LLC cache misses than
SGXBOUNDS. Note that SGXBOUNDS adds only 12 bytes
in matrixmul (4B for each matrix) which preserves the orig-
inal memory layout. Thanks to this, SGXBOUNDS performs
70% better than AddressSanitizer on 4 threads. A similar
explanation holds true for swaptions.

6.5 Effect of Optimizations
We evaluated gains of optimizations as detailed in §4.4. The
results are shown in Figure 10. On average, applying all op-
timizations yields a modest performance improvement of 2%.

Unfortunately, our optimizations are limited in scope. Our
implementation relies on Scalar Evolution and SizeOffsetVis-
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Figure 9: Performance overheads of AddressSanitizer and SGXBOUNDS over native SGX with different number of threads.
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Figure 10: Performance overheads of SGXBOUNDS over native SGX execution with different optimizations (with 8 threads).

Approach Prevented attacks
MPX 2/16 (except return-into-libc on heap & data)
AddressSanitizer 8/16 (except in-struct buffer overflows)
SGXBOUNDS 8/16 (except in-struct buffer overflows)

Table 4: Results of RIPE security benchmark.

itor LLVM analyses. However, they do not yet support inter-
procedural (whole-program) analysis. Therefore, the results
turned out to be not as impressive as we originally hoped;
we believe that enabling inter-procedural analysis in future
implementations could greatly improve performance.

Nonetheless, our optimizations can give significant perfor-
mance boost in some cases. For example, the hoisting checks
optimization is helpful for kmeans and matrixmul, with per-
formance improvements of up to 20%. Similar gains are seen
for x264 when the safe checks optimization is applied.

6.6 Security Benchmark (RIPE)
To evaluate security guarantees of SGXBOUNDS, we employed
the RIPE security benchmark [80]. RIPE claims to perform
850 working buffer-overflow attacks. However, under our
native configuration, only 46 attacks were successful: through
the shellcode that creates a dummy file and through return-into-
libc. When building RIPE under SCONE infrastructure, this
number decreased to 16 attacks: the shellcode attacks failed
because SGX disallows the int instruction used in shellcode.

Table 4 shows the security results of all approaches. Intel
MPX could not detect 14 out of these 16 attacks: the two
attacks detected were both stack-smashing attacks trying to
overwrite an adjacent function pointer. AddressSanitizer de-
tected 8 out of 16 attacks: the remaining 8 attacks were all
in-struct buffer overflows, when the same object contained
a vulnerable buffer and a target-of-attack function pointer.
Finally, SGXBOUNDS showed the exact same results as Ad-
dressSanitizer. The in-struct overflows could not be detected
because both AddressSanitizer and SGXBOUNDS operate at
the granularity of whole objects.

6.7 SPEC CPU2006 Experiments
To facilitate comparison with other approaches, we also re-
port the overheads of SGXBOUNDS over the SPEC CPU2006
benchmark suite. Note that all programs in SPEC are single-
threaded and more CPU-intensive than Phoenix and PARSEC,
such that the restrictions of SGX have less impact for SPEC.
We performed two experiments to measure performance and
memory consumption: inside of SGX enclaves (similar to pre-
vious evaluation) and outside them (to understand overheads
in normal, unconstrained environments).

SGXBOUNDS, being a bounds-checking approach, has
false positives in some legitimate programs that implement
custom memory management. For example, we could not run
soplex because it directly updates referent objects of pointers.
SGXBOUNDS can also break on programs that manipulate
high bits of pointers, e.g., gcc contains unions of pointers-ints
and manipulates high bits. Note that other approaches have the
same problems with these programs, e.g., MPX [61], Baggy
Bounds [17], and Low Fat Pointers [47] – they all require
manual modifications to misbehaving programs.

Figure 11 shows the results for our in-enclave scenario. In
agreement with experiments on Phoenix and PARSEC (see
Figure 7), SGXBOUNDS shows the lowest performance and
memory overheads on average, 41% and 0.4% respectively.
Again, SGXBOUNDS adds negligible overhead in memory
consumption which in many cases leads to better cache and
EPC locality. Consider mcf : AddressSanitizer exhibits per-
formance overhead of 2.4×whereas SGXBOUNDS–only 1%.
This is explained by EPC thrashing: AddressSanitizer has
3,400×more page faults than both original and SGXBOUNDS
versions. Similar explanations hold for other extreme cases
such as milc, sjeng, and xalanc.

Intel MPX performed slightly better than AddressSanitizer
(52% performance and 110% memory overhead against 76%
and 10× respectively) but failed to finish on astar, mcf, and
xalanc. Just like in cases of SQLite and dedup, these programs
crash due to insufficient memory for MPX Bounds Tables.
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Figure 11: SPEC inside of SGX enclave: Performance (top) and memory (bottom) overheads over native SGX execution.
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Figure 12: SPEC outside of SGX enclave (normal unconstrained environment): Performance overhead over native execution.

In addition, we show results for outside-enclave, uncon-
strained environment in Figure 12. As expected, SGXBOUNDS
performs not that well outside of enclaves, with a higher av-
erage performance overhead (55%) than AddressSanitizer
(38%).4 In unrestricted-memory environments, the benefits of
a cache-friendly layout of SGXBOUNDS are effectively wiped
out, even though the memory consumption of SGXBOUNDS is
only 0.1% in contrast to 2−4× of MPX and AddressSanitizer
(not shown on plots). Also, the 55% performance overhead of
SGXBOUNDS is comparable to the ones incurred by Baggy
Bounds (70%) and Low Fat Pointers (43%)5; see also §2.2.

7. Case Studies
In addition to SQLite, we evaluated three other applications.
Our evaluation of the case-studies is based on: (1) performance
and memory overheads; and (2) security guarantees. All appli-
cations were evaluated on the machine described in §6; clients
connected via a 10Gb network.
Memcached. We evaluated Memcached v1.4.15 [40] using
the memaslap benchmark shipped together with libmem-
cached v1.0.18 client [11]. Performance and memory over-
heads are shown in Figure 13. The uninstrumented SGX
version performs significantly worse than the native version
(60−75% throughput of native). This is due to the Memcached
working set not fitting in the CPU cache; SGX spends some
cycles on encrypting and decrypting data leaving the cache as

4 lbm and namd under AddressSanitizer perform better than the native version.
This is due to changes in memory layout and similar to dedup; also see [61].
5 For Low Fat Pointers, we took the same subset of 13 programs as in our
evaluation and calculated the geomean. For Baggy Bounds, we resorted to
specifying the reported mean over SPEC2000.

well as checking its integrity. AddressSanitizer performs very
close to SGX; even though it introduces additional memory
accesses, the original memory latency is already high enough
to hide this overhead. The performance of SGXBOUNDS can
be explained similarly. Finally, Intel MPX has an abysmal drop
in throughput: MPX bounds tables consume so much memory
that the working set exceeds the EPC and requires paging (we
observed 100×more page faults than for SGXBOUNDS).

For security evaluation, we reproduced a denial-of-service
attack, CVE-2011-4971 vulnerability [12], in the SGX en-
vironment. All approaches—AddressSanitizer, Intel MPX,
and SGXBOUNDS—detected buffer overflow in the affected
function’s arguments. AddressSanitizer and Intel MPX halted
the program, while SGXBOUNDS with its boundless memory
feature discarded the overflowed packet’s content but went into
an infinite loop due to a subsequent bug in the program’s logic.

Apache. We evaluated Apache v2.4.18 [5] with OpenSSL
v1.0.1f using the ab benchmark [2]. The performance results
are plotted in Figure 13b. The SGX version of Apache per-
forms slightly and consistently better than the native version.
We attribute this to the SCONE features of user-level schedul-
ing and asynchronous system calls [19]. Intel MPX quickly
deteriorates with more clients; looking at the number of page
faults, we conclude that this is due to the increasing overheads
of bounds tables. (In Apache, each new client requires around
1MB of memory which bloats the bounds metadata for Intel
MPX.) AddressSanitizer performs 2% worse than SGX, and
SGXBOUNDS—on par with SGX.

The unexpected 50% increase in memory use for SGX-
BOUNDS in comparison to SGX is due to the custom memory
allocator of Apache. It allocates only page-aligned amounts
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of memory, and the additional 4B of metadata forces our mmap
wrapper to allocate a whole additional page.

To evaluate security, we looked at the infamous Heartbleed
bug [4, 14]. AddressSanitizer, Intel MPX, and SGXBOUNDS
all detect Heartbleed attack. Additionally, SGXBOUNDS does
not crash the application, but—thanks to boundless memory—
copies zeros into the reply message in accordance to the
failure-oblivious computing policy. Thus, SGXBOUNDS pre-
vents confidential data leaks, at the same time allowing Apache
to continue its execution.

Nginx. We evaluated Nginx v1.4.0 [13] using the ab bench-
mark. Figure 13c shows performance overheads. The 5−20%
difference in throughput between the native version and SGX
is due to the overhead of copying the 200KB web page twice,
first to the SCONE’s syscall thread and then further to the
socket. Note that this overhead was hidden by the overhead
of thread synchronization in Apache (Apache uses 25 threads
while Nginx is single-threaded).

AddressSanitizer performs the worst, achieving only
65−70% throughput of that of SGX. In comparison to Apache,
Intel MPX performs better than AddressSanitizer. The reason
for this is a smarter memory management policy of Nginx,
with as little memory copying as possible [13]. Because of
this, Intel MPX does not spill bounds metadata as extensively
as in Apache, and gains better performance as a result. Finally,
SGXBOUNDS achieves 80−85% throughput of SGX thanks
to its efficient metadata scheme.

For security evaluation, the bug under test was a stack
buffer overflow CVE-2013-2028 that can be used to launch
a ROP attack [3]. All three approaches detect this bug. With
SGXBOUNDS boundless memory feature, Nginx can drop the
offending request and continue its execution.

8. Discussion and Concluding Remarks
In this work, we presented SGXBOUNDS—a memory-safety
approach tailored to the specifics of Intel SGX. We conclude
by discussing the limitations of our approach, future work,
and peculiarities of SGX and MPX.

EPC Size. SGXBOUNDS mandates the use of a limited 32-bit
address space. This is in accordance with current SGX im-
plementations which allow only 36-bit address space. SGX-
BOUNDS could be refined to allow 36-bit pointers, hinged on

the correct alignment of newly allocated objects (which is
already provided by compilers and memory allocators).

It is possible that future SGX enclaves will have larger
address spaces, decreasing the number of spare bits in point-
ers and negating the premise of SGXBOUNDS. We believe
enclaves spanning more than 4GB of memory are doubtful as
they will suffer huge performance penalty. In addition, SGX
is best suited for programs with small TCB and working sets.
Limitation of static linking. SGXBOUNDS and the underly-
ing SCONE infrastructure currently require the program to
be statically linked. There is a decades-long debate on static
vs dynamic linking [18, 66, 76, 78]. We strongly believe that
dynamic linking is detrimental for security for a variety of
reasons, including LD_PRELOAD issues, ldd and linker exploits.
In addition, static linking enables powerful whole-program
optimizations. Yet, SGXBOUNDS could be used with dynamic
libraries, though it would require additional wrapper functions
for interoperability with them.
Catching intra-object overflows. SGXBOUNDS keeps bounds
for whole objects and therefore cannot detect intra-object over-
flows (similar to AddressSanitizer). We currently explore the
ability to catch such overflows using narrowing of bounds:
whenever SGXBOUNDS detects an access through a struct
field, it updates the current pointer bounds to the bounds of
this field. The main difficulty here is to keep additional lower-
bound metadata for each object field; for this, we extend our
metadata space and utilize metadata hooks.
Intel MPX. Considering that Intel MPX is a hardware exten-
sion, its low performance was surprising to us. Intel MPX
performs well if the protected application works only with a
small portion of pointers, but in the opposite case the over-
heads may get very high. To understand the underlying reasons
of poor MPX performance, we conducted a more extensive
and rigorous evaluation, results of which can be found in [61].
Software availability. Source code is publicly available under
https://github.com/tudinfse/sgxbounds.
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