There is a newer version of this record available.

Journal article Open Access

Ten simple rules for machine-actionable data management plans (preprint)

Miksa, Tomasz; Simms, Stephanie; Mietchen, Daniel; Jones, Sarah


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.1172673</identifier>
  <creators>
    <creator>
      <creatorName>Miksa, Tomasz</creatorName>
      <givenName>Tomasz</givenName>
      <familyName>Miksa</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-4929-7875</nameIdentifier>
    </creator>
    <creator>
      <creatorName>Simms, Stephanie</creatorName>
      <givenName>Stephanie</givenName>
      <familyName>Simms</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-9129-3790</nameIdentifier>
    </creator>
    <creator>
      <creatorName>Mietchen, Daniel</creatorName>
      <givenName>Daniel</givenName>
      <familyName>Mietchen</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-9488-1870</nameIdentifier>
    </creator>
    <creator>
      <creatorName>Jones, Sarah</creatorName>
      <givenName>Sarah</givenName>
      <familyName>Jones</familyName>
    </creator>
  </creators>
  <titles>
    <title>Ten simple rules for machine-actionable data management plans (preprint)</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>data management plans, machine-actionable, activedmps, data stewardship, data curation, automation, integration, ten simple rules</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-02-13</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1172673</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1172672</relatedIdentifier>
  </relatedIdentifiers>
  <version>preprint</version>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Data management plans (DMPs) are documents accompanying research proposals and project outputs. They describe data and tools employed in scientific investigations, mostly in free-form text. DMPs are often seen as an administrative exercise and not as an integral part of research practice.&lt;/p&gt;

&lt;p&gt;There is now widespread recognition that the DMP can have more thematic, machine-actionable richness with added value for all stakeholders: researchers, funders, repository managers, research administrators, data librarians, etc. The larger goal is to improve the experience for all involved by exchanging information across research tools and systems and embedding DMPs in existing workflows. This will enable parts of the DMP to be automatically generated and shared, thus reducing administrative burdens and improving the quality of information within a DMP.&lt;/p&gt;

&lt;p&gt;This paper presents 10 simple rules outlining specific steps to put machine-actionable DMPs into practice and realize their benefits.&lt;/p&gt;</description>
  </descriptions>
</resource>
2,343
987
views
downloads
All versions This version
Views 2,343942
Downloads 987479
Data volume 359.4 MB219.5 MB
Unique views 2,158878
Unique downloads 822413

Share

Cite as