
ChebTools: C++11 (and Python) tools for
working with Chebyshev expansions

Summary

Chebyshev-basis expansions, and more broadly, orthogonal polynomial expan-
sions, are commonly used as numerical approximations of continuous functions on
closed domains (Boyd 2013,Mason and Handscomb (2003),Battles and Trefethen
(2004)). One of the most successful projects that makes use of the Cheby-
shev expansions is the chebfun library (Driscoll, Hale, and Trefethen 2014) for
MATLAB. Other similar libraries are pychebfun1, chebpy2, and Approxfun3.
Our library ChebTools fills a similar niche as that of chebfun – working with
Chebyshev expansions.

The primary motivation for the development of ChebTools is the need for a
highly optimized and fast C++11 library for working with Chebyshev expansions
in order to do one-dimensional rootfinding from nonlinear functions of multiple
variables that arise out of thermodynamic modeling (equations of state of multiple
state variables). A manuscript on this topic is forthcoming that builds off the
tools developed in ChebTools.

Internally, the header-only library Eigen4 is used to carry out all the matrix oper-
ations, allowing for behind-the-scenes vectorization without any user intervention.
Thus the library is also very computationally efficient.

A short list of the capabilities of ChebTools is as follows:

• Construct a Chebyshev expansion approximation of any one-dimensional
function in an arbitrary closed domain.

• Apply numerical operators on expansions : addition, subtraction, multipli-
cation, arbitrary mathematical functions.

• Find all roots of the function.
• Calculate the derivative of the expansion.
1https://github.com/pychebfun
2https://github.com/chebpy/chebpy
3https://github.com/JuliaApproximation/ApproxFun.jl
4http://eigen.tuxfamily.org

1

While C++11 allows for the development of very computationally-efficient code,
users often prefer a higher-level interface. As such, a comprehensive one-to-one
Python wrapper of ChebTools was developed through the use of the pybind115

library(Jakob, Rhinelander, and Moldovan (2016)). This library offers the
capability to natively integrate C++11 and Python - it is, for instance, trivial to
pass Python functions to C++ functions accepting C++11 std::function (for
use as a callback, or here, as the function sampled to generate the expansion).

We provide a jupyter notebook (Pérez and Granger 2007) mirroring much of the
example code from Battles and Trefethen (2004) and pychebfun. Furthermore, a
binder6 environment has been configured such that ChebTools can be explored in
an online jupyter notebook without installing anything on the user’s computer.

In this Python code block, we demonstrate finding the roots and extrema of the
0-th Bessel function in the closed domain [0, 30]:

import scipy.special
import ChebTools
Only keep the roots that are in [-1,1] in scaled coordinates
only_in_domain = True
The 0-th Bessel function (for code concision)
def J0(x): return scipy.special.jn(0,x)
Make a 200-th order expansion of the 0-th Bessel function in [0,30]
f = ChebTools.generate_Chebyshev_expansion(200, J0, 0, 30)
Roots of the function
rts = f.real_roots(only_in_domain)
Extrema of the function (roots of the derivative, where dy/dx =0)
extrema = f.deriv(1).real_roots(only_in_domain)

A graphical representation of the roots and extrema of the 0-th Bessel function
in the closed domain [0, 30] is shown in the jupyter notebook in the repository
and is also displayed here:

Disclaimer

Contribution of the National Institute of Standards and Technology, not subject
to copyright in the U.S. Commercial equipment, instruments, or materials are
identified only in order to adequately specify certain procedures. In no case
does such identification imply recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply that the products
identified are necessarily the best available for the purpose.

5https://github.com/pybind/pybind11
6https://mybinder.org/

2

Figure 1: Roots and extrema of the 0-th Bessel function

References

Battles, Z., and L.N. Trefethen. 2004. “An Extension Of MATLAB To Con-
tinuous Functions And Operators.” SIAM J. Sci. Comput. 25 (5): 1743–70.
doi:10.1137/S1064827503430126.

Boyd, J.P. 2013. “Finding the Zeros of a Univariate Equation: Proxy Rootfinders,
Chebyshev Interpolation, and the Companion Matrix.” SIAM Review 55 (2):
375–96. doi:10.1137/110838297.

Driscoll, T.A., N. Hale, and L.N. Trefethen. 2014. “Chebfun Guide.” Oxford:
Pafnuty Publications.

Jakob, W., J. Rhinelander, and D. Moldovan. 2016. “Pybind11 – Seamless
Operability Between C++11 and Python.”

Mason, J.C., and D.C. Handscomb. 2003. Chebyshev Polynomials. Boca Raton:
Chapman & Hall.

Pérez, F., and B. E. Granger. 2007. “IPython: A System for Interactive Scientific
Computing.” Computing in Science and Engineering 9 (3). IEEE Computer
Society: 21–29. doi:10.1109/MCSE.2007.53.

3

http://dx.doi.org/10.1137/S1064827503430126
http://dx.doi.org/10.1137/110838297
http://dx.doi.org/10.1109/MCSE.2007.53

	Summary
	Disclaimer
	References

