Journal article Open Access

WevQuery: Testing Hypotheses about Web Interaction Patterns

Aitor Apaolaza; Markel Vigo


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Hypothesis Testing</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">A/B Testing</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">User Interface Evaluation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Usability</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Web</subfield>
  </datafield>
  <controlfield tag="005">20181207133949.0</controlfield>
  <controlfield tag="001">1167684</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Manchester</subfield>
    <subfield code="a">Markel Vigo</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">3366486</subfield>
    <subfield code="z">md5:a14c8727e60d4f28b89bcaf6257a30f8</subfield>
    <subfield code="u">https://zenodo.org/record/1167684/files/a4-apaolaza.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-06-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-moving-h2020</subfield>
    <subfield code="o">oai:zenodo.org:1167684</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="v">1</subfield>
    <subfield code="p">Proceedings of the ACM on Human-Computer Interaction</subfield>
    <subfield code="n">EICS</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Manchester</subfield>
    <subfield code="a">Aitor Apaolaza</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">WevQuery: Testing Hypotheses about Web Interaction Patterns</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-moving-h2020</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">693092</subfield>
    <subfield code="a">Training towards a society of data-savvy information professionals to enable open leadership innovation</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Remotely stored user interaction logs, which give access to a wealth of data generated by large numbers of users, have been long used to understand if interactive systems meet the expectations of designers. Unfortunately, detailed insight into users&amp;#39; interaction behaviour still requires a high degree of expertise and domain specific knowledge. We present WevQuery, a scalable system to query user interaction logs in order to allow designers to test their hypotheses about users&amp;#39; behaviour. WevQuery supports this purpose using a graphical notation to define the interaction patterns designers are seeking. WevQuery is scalable as the queries can then be executed against large user interaction datasets by employing the MapReduce paradigm. This way WevQuery provides designers effortless access to harvest users&amp;#39; interaction patterns, removing the burden of low-level interaction data analysis. We present two scenarios to showcase the potential of WevQuery, from the design of the queries to their execution on real interaction data accounting for 5.7m events generated by 2,445 unique users.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1145/3095806</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
26
24
views
downloads
Views 26
Downloads 24
Data volume 80.8 MB
Unique views 23
Unique downloads 22

Share

Cite as