Conference paper Open Access

Global-to-local protein shape similarity system driven by digital elevation models

Craciun, Daniela; Sirugue, Jeremy; Montes, Matthieu


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-11-22</subfield>
  </datafield>
  <controlfield tag="005">20200120163839.0</controlfield>
  <controlfield tag="001">1167593</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:1167593</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;We are currently developing a bio-shape similarity system for supplying high-throughput protein shape similarity applications within massive datasets. The proposed system is powered by a global-to-local shape similarity system which exploits shape elevation and local convexity attributes. In the first step, a global similarity is computed between the shape descriptors associated to each protein input. The procedure outputs best N similarities chosen by the user, within a query-to-cluster approach. The second stage is a patch-based local similarity computation method which is designed to find the best similar target from the cluster for supplying query-to-target protein retrieval applications. The local patch-based similarity comparison benefits of a multi-CPU implementation, offering thus fast query search capabilities within massive datasets. Experimental results on the SHREC 2017 BioShape dataset composed of 5484 models, illustrate the effectiveness of the proposed system.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Laboratoire GBA, EA4627, CNAM</subfield>
    <subfield code="a">Sirugue, Jeremy</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Laboratoire GBA, EA4627, CNAM</subfield>
    <subfield code="0">(orcid)0000-0001-5921-460X</subfield>
    <subfield code="a">Montes, Matthieu</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">316716</subfield>
    <subfield code="z">md5:4ccca7b12a04bbccf3c1f18c85e11b2a</subfield>
    <subfield code="u">https://zenodo.org/record/1167593/files/Craciun-BioSMART_2017.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Laboratoire GBA, EA4627, CNAM</subfield>
    <subfield code="a">Craciun, Daniela</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Shape similarity search, Protein structure, Computer vision</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/BIOSMART.2017.8095317</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Global-to-local protein shape similarity system driven by digital elevation models</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">640283</subfield>
    <subfield code="a">2D Conformal mapping of protein surfaces: applications to VIsualization and DOCKing software</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
</record>
68
123
views
downloads
Views 68
Downloads 123
Data volume 39.0 MB
Unique views 65
Unique downloads 121

Share

Cite as