Conference paper Open Access
Craciun, Daniela;
Sirugue, Jeremy;
Montes, Matthieu
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/f43fc984-7a4c-4222-9e5e-40ddccb02ebb/Craciun-BioSMART_2017.pdf" }, "checksum": "md5:4ccca7b12a04bbccf3c1f18c85e11b2a", "bucket": "f43fc984-7a4c-4222-9e5e-40ddccb02ebb", "key": "Craciun-BioSMART_2017.pdf", "type": "pdf", "size": 316716 } ], "owners": [ 30003 ], "doi": "10.1109/BIOSMART.2017.8095317", "stats": { "version_unique_downloads": 121.0, "unique_views": 65.0, "views": 68.0, "version_views": 68.0, "unique_downloads": 121.0, "version_unique_views": 65.0, "volume": 38956068.0, "version_downloads": 123.0, "downloads": 123.0, "version_volume": 38956068.0 }, "links": { "doi": "https://doi.org/10.1109/BIOSMART.2017.8095317", "latest_html": "https://zenodo.org/record/1167593", "bucket": "https://zenodo.org/api/files/f43fc984-7a4c-4222-9e5e-40ddccb02ebb", "badge": "https://zenodo.org/badge/doi/10.1109/BIOSMART.2017.8095317.svg", "html": "https://zenodo.org/record/1167593", "latest": "https://zenodo.org/api/records/1167593" }, "created": "2018-02-06T10:10:06.611390+00:00", "updated": "2020-01-20T16:38:39.096875+00:00", "conceptrecid": "1167592", "revision": 5, "id": 1167593, "metadata": { "access_right_category": "success", "doi": "10.1109/BIOSMART.2017.8095317", "description": "<p>We are currently developing a bio-shape similarity system for supplying high-throughput protein shape similarity applications within massive datasets. The proposed system is powered by a global-to-local shape similarity system which exploits shape elevation and local convexity attributes. In the first step, a global similarity is computed between the shape descriptors associated to each protein input. The procedure outputs best N similarities chosen by the user, within a query-to-cluster approach. The second stage is a patch-based local similarity computation method which is designed to find the best similar target from the cluster for supplying query-to-target protein retrieval applications. The local patch-based similarity comparison benefits of a multi-CPU implementation, offering thus fast query search capabilities within massive datasets. Experimental results on the SHREC 2017 BioShape dataset composed of 5484 models, illustrate the effectiveness of the proposed system.</p>", "license": { "id": "CC-BY-4.0" }, "title": "Global-to-local protein shape similarity system driven by digital elevation models", "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "1167592" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "1167593" } } ] }, "grants": [ { "code": "640283", "links": { "self": "https://zenodo.org/api/grants/10.13039/501100000780::640283" }, "title": "2D Conformal mapping of protein surfaces: applications to VIsualization and DOCKing software", "acronym": "VIDOCK", "program": "H2020", "funder": { "doi": "10.13039/501100000780", "acronyms": [], "name": "European Commission", "links": { "self": "https://zenodo.org/api/funders/10.13039/501100000780" } } } ], "keywords": [ "Shape similarity search, Protein structure, Computer vision" ], "publication_date": "2017-11-22", "creators": [ { "affiliation": "Laboratoire GBA, EA4627, CNAM", "name": "Craciun, Daniela" }, { "affiliation": "Laboratoire GBA, EA4627, CNAM", "name": "Sirugue, Jeremy" }, { "orcid": "0000-0001-5921-460X", "affiliation": "Laboratoire GBA, EA4627, CNAM", "name": "Montes, Matthieu" } ], "access_right": "open", "resource_type": { "subtype": "conferencepaper", "type": "publication", "title": "Conference paper" } } }
Views | 68 |
Downloads | 123 |
Data volume | 39.0 MB |
Unique views | 65 |
Unique downloads | 121 |