Conference paper Open Access

Global-to-local protein shape similarity system driven by digital elevation models

Craciun, Daniela; Sirugue, Jeremy; Montes, Matthieu


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/f43fc984-7a4c-4222-9e5e-40ddccb02ebb/Craciun-BioSMART_2017.pdf"
      }, 
      "checksum": "md5:4ccca7b12a04bbccf3c1f18c85e11b2a", 
      "bucket": "f43fc984-7a4c-4222-9e5e-40ddccb02ebb", 
      "key": "Craciun-BioSMART_2017.pdf", 
      "type": "pdf", 
      "size": 316716
    }
  ], 
  "owners": [
    30003
  ], 
  "doi": "10.1109/BIOSMART.2017.8095317", 
  "stats": {
    "version_unique_downloads": 121.0, 
    "unique_views": 65.0, 
    "views": 68.0, 
    "version_views": 68.0, 
    "unique_downloads": 121.0, 
    "version_unique_views": 65.0, 
    "volume": 38956068.0, 
    "version_downloads": 123.0, 
    "downloads": 123.0, 
    "version_volume": 38956068.0
  }, 
  "links": {
    "doi": "https://doi.org/10.1109/BIOSMART.2017.8095317", 
    "latest_html": "https://zenodo.org/record/1167593", 
    "bucket": "https://zenodo.org/api/files/f43fc984-7a4c-4222-9e5e-40ddccb02ebb", 
    "badge": "https://zenodo.org/badge/doi/10.1109/BIOSMART.2017.8095317.svg", 
    "html": "https://zenodo.org/record/1167593", 
    "latest": "https://zenodo.org/api/records/1167593"
  }, 
  "created": "2018-02-06T10:10:06.611390+00:00", 
  "updated": "2020-01-20T16:38:39.096875+00:00", 
  "conceptrecid": "1167592", 
  "revision": 5, 
  "id": 1167593, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.1109/BIOSMART.2017.8095317", 
    "description": "<p>We are currently developing a bio-shape similarity system for supplying high-throughput protein shape similarity applications within massive datasets. The proposed system is powered by a global-to-local shape similarity system which exploits shape elevation and local convexity attributes. In the first step, a global similarity is computed between the shape descriptors associated to each protein input. The procedure outputs best N similarities chosen by the user, within a query-to-cluster approach. The second stage is a patch-based local similarity computation method which is designed to find the best similar target from the cluster for supplying query-to-target protein retrieval applications. The local patch-based similarity comparison benefits of a multi-CPU implementation, offering thus fast query search capabilities within massive datasets. Experimental results on the SHREC 2017 BioShape dataset composed of 5484 models, illustrate the effectiveness of the proposed system.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Global-to-local protein shape similarity system driven by digital elevation models", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "1167592"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "1167593"
          }
        }
      ]
    }, 
    "grants": [
      {
        "code": "640283", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::640283"
        }, 
        "title": "2D Conformal mapping of protein surfaces: applications to VIsualization and DOCKing software", 
        "acronym": "VIDOCK", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "Shape similarity search, Protein structure, Computer vision"
    ], 
    "publication_date": "2017-11-22", 
    "creators": [
      {
        "affiliation": "Laboratoire GBA, EA4627, CNAM", 
        "name": "Craciun, Daniela"
      }, 
      {
        "affiliation": "Laboratoire GBA, EA4627, CNAM", 
        "name": "Sirugue, Jeremy"
      }, 
      {
        "orcid": "0000-0001-5921-460X", 
        "affiliation": "Laboratoire GBA, EA4627, CNAM", 
        "name": "Montes, Matthieu"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "conferencepaper", 
      "type": "publication", 
      "title": "Conference paper"
    }
  }
}
68
123
views
downloads
Views 68
Downloads 123
Data volume 39.0 MB
Unique views 65
Unique downloads 121

Share

Cite as