Conference paper Open Access
Craciun, Daniela;
Sirugue, Jeremy;
Montes, Matthieu
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://zenodo.org/record/1167593</identifier> <creators> <creator> <creatorName>Craciun, Daniela</creatorName> <givenName>Daniela</givenName> <familyName>Craciun</familyName> <affiliation>Laboratoire GBA, EA4627, CNAM</affiliation> </creator> <creator> <creatorName>Sirugue, Jeremy</creatorName> <givenName>Jeremy</givenName> <familyName>Sirugue</familyName> <affiliation>Laboratoire GBA, EA4627, CNAM</affiliation> </creator> <creator> <creatorName>Montes, Matthieu</creatorName> <givenName>Matthieu</givenName> <familyName>Montes</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-5921-460X</nameIdentifier> <affiliation>Laboratoire GBA, EA4627, CNAM</affiliation> </creator> </creators> <titles> <title>Global-to-local protein shape similarity system driven by digital elevation models</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2017</publicationYear> <subjects> <subject>Shape similarity search, Protein structure, Computer vision</subject> </subjects> <dates> <date dateType="Issued">2017-11-22</date> </dates> <resourceType resourceTypeGeneral="ConferencePaper"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1167593</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1109/BIOSMART.2017.8095317</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>We are currently developing a bio-shape similarity system for supplying high-throughput protein shape similarity applications within massive datasets. The proposed system is powered by a global-to-local shape similarity system which exploits shape elevation and local convexity attributes. In the first step, a global similarity is computed between the shape descriptors associated to each protein input. The procedure outputs best N similarities chosen by the user, within a query-to-cluster approach. The second stage is a patch-based local similarity computation method which is designed to find the best similar target from the cluster for supplying query-to-target protein retrieval applications. The local patch-based similarity comparison benefits of a multi-CPU implementation, offering thus fast query search capabilities within massive datasets. Experimental results on the SHREC 2017 BioShape dataset composed of 5484 models, illustrate the effectiveness of the proposed system.</p></description> </descriptions> <fundingReferences> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/640283/">640283</awardNumber> <awardTitle>2D Conformal mapping of protein surfaces: applications to VIsualization and DOCKing software</awardTitle> </fundingReference> </fundingReferences> </resource>
Views | 68 |
Downloads | 123 |
Data volume | 39.0 MB |
Unique views | 65 |
Unique downloads | 121 |