
Automatic Phrase Continuation
from Guitar and Bass-guitar
Melodies

Srikanth Cherla

Master’s Thesis MTG - UPF / 2011
Master in Sound and Music Computing

Master’s Thesis Supervisor:
Dr. Hendrik Purwins
Dept. of Information and
Communication Technologies
Universitat Pompeu Fabra

Automatic Phrase Continuation from Guitar and Bass-Guitar
Melodies

Srikanth Cherla

Music Technology Group
Universitat Pompeu Fabra
Tanger, 122-140, 3rd Floor
08018 Barcelona, SPAIN.

Master’s thesis

Abstract

A framework is proposed for generating musically similar and interesting variations
of a given monophonic melody. In this work, the focus is on rock/pop guitar and
bass-guitar melodies with the aim of extensions to other instruments and musical
styles. The original audio melody in audio format is first segmented into its compo-
nent notes using onset detection and pitch estimation. Clustering is performed on
the pitches to obtain a symbolic representation of pitch sequences in it. The note
onsets are aligned with the estimated meter of the melody for a time-homogeneous
symbolization of the rhythm in terms of onsets/rests and the metrical locations of
their occurrence. A joint representation based on the cross-product of these two
individual representations is used to train the prediction framework - the variable-
length Markov chain. It is hypothesized that such a model will rearrange, while
maintaining certain coherence, the segments of the original melody. The musical
quality of the generated melodies was evaluated through a questionnaire by a group
of experts and received an overall positive response.

Computing Reviews (1998) Categories and Subject Descriptors:

H Information Systems
H.5 Information Interfaces and Presentation
H.5.5 Sound and Music Computing

Key words:

Melody prediction, variable-length Markov Chains, stochastic music generation.

Contents

1 Introduction 1

1.1 Background . 2

1.1.1 Music as a Process . 2

1.1.2 Deterministic & Stochastic Models of Process 3

1.1.3 Stochasticity in Music . 3

1.1.4 Markov Chains for Musical Composition 4

1.2 Motivation . 6

2 State-of-the-Art 9

2.1 Segmentation . 9

2.2 Representation & Generation . 10

2.3 Evaluation . 13

3 Segmentation 17

3.1 Onset Detection . 17

3.2 Onset Cleaning . 18

3.3 Pitch Estimation . 19

4 Representation 21

4.1 Pitch Clustering . 21

4.1.1 The Variance Ratio Criterion 22

3

4 CONTENTS

4.2 Interval Quantization . 24

4.2.1 K-Means Clustering with Symmetry Constraint 27

4.2.2 Interval-Pitch Matrix . 27

4.3 Metrical Analysis . 27

4.4 Final Melody Representation . 32

4.4.1 Disjoint Representation . 33

4.4.2 Combined Representation 34

5 Generation 37

5.1 Stochastic Process . 38

5.2 Markov Chains . 38

5.2.1 Transition Nucleus . 38

5.3 Homogeneous Markov Chains . 39

5.4 Variable Length Markov Chains . 40

5.4.1 Context Function . 41

5.5 Tree representation of VLMCs . 41

5.6 Application to the system . 43

5.7 Generation Strategy . 44

5.8 Interpretation . 45

6 Evaluation 47

6.1 Database . 47

6.2 Onset Detection . 49

6.3 Expert Evaluation . 49

6.3.1 Questionnaire . 51

CONTENTS 5

7 Discussion 55

7.1 Onset Detection . 55

7.2 Pitch Detection . 56

7.3 Beat Detection & Onset Matching 57

7.4 Pitch & Interval Representation . 58

7.5 Context length & Recombination factor 60

7.6 Expert Evaluation . 63

8 Conclusions and Future Work 67

8.1 Future Work & Improvements . 67

8.2 Conclusions . 68

References 68

Chapter 1

Introduction

“Models of process are natural to musical thinking. As we listen, part
of us drinks in the sensual experience of sound, while another part is con-
stantly setting up expectations, and in so doing, constructing hypotheses
of musical process.”

-Curtis Roads

The idea of making music using stochastic and algorithmic methods is not some-
thing unheard of. Although it is only in the more recent times that labels like al-
gorithmic composition or stochastic music have come to be associated with certain
kinds music, there have always been algorithmic and stochastic elements in music
composition and improvisation. Mathematics has been an intrinsic part of music
right from its creation, to its expression and perception. Musical output has always
involved the use of formulas and often unwritten, yet perceivable processes. The
concept has always existed but its expression and interpretation have evolved over
centuries.

The current thesis focuses on generating stylistically similar variations of bass-
lines and guitar melodies based on the statistical analysis of patterns occurring in
the original melody. While the scope of the work is limited to specific instruments
and styles of music, it is proposed that the described method may also be extended
to a broader context. This chapter provides the necessary background and historical
references to put things into context for the reader before explaining the technical
details later on.

1

2 CHAPTER 1. INTRODUCTION

1.1 Background

Prior to understanding machine-generated music, one must familiarize oneself with
the idea of the musical process which is the cornerstone of all approaches that rely
on machines to imitate human-like music. This section first introduces the reader
to the general idea of a musical process and gradually narrows down the discussion
to the Markov chain - a fairly popular representation the musical process, which is
also employed here.

1.1.1 Music as a Process

The view of music as a process, as noted by Roads [Roa96] has been the key idea
around which much of work related to algorithmic/stochastic music has revolved.
A process, in a very general sense, can be defined as a series of actions, changes,
or functions bringing about a result. Much like this general definition, a musical
process also involves certain types of changes, actions, or functions that bring about
a musical result - the composition. Anything that can be regarded as a process is
governed by an underlying mechanism. The presence of such a mechanism in music
can be seen in the difference between how it is perceived by the experienced and the
inexperienced ear. The former would be more aware of the underlying mechanism
of the musical process than the latter and would also be able to describe it in a
simplified manner, grouping similar aspects, repetitions, highlighting variations and
changes, etc. We often refer to aspects of the mechanism of a musical process at
various levels when we speak in terms of verse, chorus, key, rhythm, intervals, etc.
when referring to a musical piece.

While the awareness of the musical process may not be of much consequence
to the casual listener, or someone who is only interested in experiencing the aes-
thetic effects of music, it is of great benefit to the musicologist, the musician or the
composer. In order to create music, one must rely on a suitable representation for
describing and expressing it. One of the earliest formalizations in Western music
dates back to around 1026 when Guido d’Arezzo first introduced the ut-re-mi (now
known as do-re-mi) system of associating a syllable with a musical note. He is also
credited for having formulated the modern staff notation used in Western music.
Any such notation or representation that one devises for a style of music, is simply
a set of tools for the symbolic representation of the musical process.

1.1. BACKGROUND 3

1.1.2 Deterministic & Stochastic Models of Process

The interpretation of music as a process implies the existence of an underlying
mechanism that is responsible for making the music sound the way it does. A
composition, under this view, is essentially a complex set of rearrangements and
variations of musical elements (interval, pitch, texture, timbre, etc.) based on some
principles that determine its nature. One could as well say that two pieces that
sound alike are due to the occurrence of similar musical patterns and variations in
them. Creating systematically varying patterns out of musical elements involves a
decision (or an event that may be interpreted as a decision) at each stage of the
composition to create a change or an evolution of a certain nature. One may picture
the evolution of a musical piece as a sequence of transitions between a set of musical
states that are governed by decisions according to a pre-determined mechanism.

A set of instructions are required to realize the process of making these decisions,
which is natural to humans, on a machine such as a computer. Several methods
like finite-state automata, Markov chains and probabilistic grammars, have been
applied over the years that attempt to simulate this decision process. These can
broadly be classified into two approaches - deterministic and stochastic. The basic
difference between models of these two types is that the former does not rely on
randomness and the latter does. Processes are deterministic if there is a unique
consequent to every state, or stochastic if there is a probability distribution of
possible consequents.

In interest of relevance to the topic of the thesis, further discussions on models
for music generation are restricted to the stochastic type. The reader is referred
to [Roa96] for a review on both deterministic and stochastic models.

1.1.3 Stochasticity in Music

While, historically, attempts to introduce stochasticity in music have been many,
this section covers some of the significant ones that would help establish some un-
derstanding of the idea. For a comprehensive review of approaches, the reader is
referred to [Roa96], [Ame87] and [Hil70].

Aleatoric musical instruments existed in ancient Asia in the form of wind chimes.
A wind chime consists of a system of similar resonating objects (such as metal
tubes, sea shells, etc.) suspended around a clapper which strikes these objects to
produce sounds when wind blows through the system. These were also used by
many composers such as Olivier Messaien, Giles Swayne and David Sitek in recent
times. In wind chimes, music is intended to be produced by natural movements

4 CHAPTER 1. INTRODUCTION

or changes (wind blowing, motion of the support) and can be regarded as an early
form of stochastic music.

Stochasticity in musical composition has existed for many centuries prior to the
invention of computers. A popular game in post-medieval Western Europe that
could be considered as an example of stochastic composition of the time, was the
system known as Musikalisches Würfelspiel, meaning “Musical Dice Game”. This
game essentially involved putting together pre-written measures of music together to
create a Minuet. The element of chance was introduced into the Minuet composition
through the use of dice. Each number possible on the dice was associated with a set
of measures, one of which was picked up when that number turned up on the dice.
Joseph Haydn’s Philharmonic Joke was composed in this manner. Mozart was also
well-known for his Musikalisches Würfelspiel.

There have also been different mechanical musical instruments that were made
for stochastic music composition [B7̈8]. One such instrument constructed by Di-
etrich Winkel in 1821 was the Componium. It was essentially a mechanical organ
which consisted of two barrels that took turns to perform measures of randomly cho-
sen music alternately. The Componium produced variations on themes that were
programmed into it.

Iannis Xenakis, who is widely accepted as one of the most influential post-world
war avant-garde composers, has composed several pieces using mathematics and
stochastic processes. He authored the Stochastic Music Program (SMP), which
was based on formulas originally used to describe the behaviour of particles in
gases [Xen01]. The composer specifies global attributes such as average duration of
sections, timbre classes, density distributions of timbre classes, etc. to the program
and executes it to generate a stochastic musical piece. This program helped create
many of Xenakis’ works, including the well known Eonta, for piano and brass.

1.1.4 Markov Chains for Musical Composition

The Markov chain has been one of the most popular choices for algorithmic com-
posers in the past. It is essentially a probabilistic framework that models the be-
haviour of sequences of events. The likelihood of a future event is determined by the
nature of one or more events occurring in the immediate past. Such a framework
models the evolution of a process much in the same way as musical composition
where musical events of the immediate past play an important role in determining
what comes next. And thus, they have been adopted in various computer-based
compositional approaches.

1.1. BACKGROUND 5

The first ever application of Markov chains, by their creator Andrei Andreevich
Markov, was to distil tendencies of spelling from the first 20, 000 characters in the
text of Aleksandr Pushkin’s Eugene Onegin. His intent was to model the alteration
of vowels and consonants in Russian literary works. So, right from their inception,
Markov chains have mainly been used for determining likelihoods of sequences in
data which are based on a process, but whose nature cannot be precisely determined.
A more detailed discussion of Markov chains, and their application in the current
work is presented in later chapters. The reader is also referred to [GS97] for an
introduction to Markov chains and to [Ame87] for a survey of their applications to
musical composition prior to the 90s.

One of the first pieces of music ever to be written with the aid of a computer was
the Illiac Suite for String Quartet which was the result of a series of four experiments
(each one being a movement in the composition) by Hiller and Isaacson with the
Illiac I digital computer [HI59]. These were pioneering experiments to see how
successfully a computer would be able to compose a musical piece. The fourth
movement of the Illiac Suite was composed using Markov chains.

Another notable application of Markov chains in music can be seen in Iannis
Xenakis’s electroacoustic composition Analogique A + B. This was based on his
proposal to compose on the basis of “screens”, a representation of regions of a
musical space for each “slice of time”. And the progression from one screen to the
next is governed by Markov chains, thus incorporating a sort of “memory” into
the temporal organization of the music [Har02]. This approach differs from that of
Hiller et al. in the sense that it incorporates many simultaneous Markov chains.

The order of a Markov chain determines how much of the most recent past is
considered when computing the likelihood of a certain outcome in the next time
instant. While the increase in order of the Markov chain facilitates dealing with
data more comprehensively, it requires a large amount of data to train and also
becomes very rigid in its predictions. On the other hand, a first order Markov
chain is often susceptible to produce seemingly random predictions. As a result,
many of the recent approaches have adopted the variable-length Markov Chains
(VLMCs), which provide a trade-off between the two extremes, for representing
musical information [Mar10], [CW95], [Pac03]. At the same time, they can be
represented with a parsimonious, efficient tree structure. A detailed introduction to
VLMCs can be found in [BW99].

6 CHAPTER 1. INTRODUCTION

1.2 Motivation

Recent approaches of algorithmic/stochastic music have aimed at creating mean-
ingful and interesting music using mathematical and statistical models with the aid
of computers to realize these models. These approaches essentially play with the
idea of programming computers with rules that humans generally follow while com-
posing or improvising music to have them do the same, and sometimes maybe even
with the hope of taking music creation to a new level. Computers are thus trained
on rules of musical style and made to compose and sometimes even perform. This
type of music gained prominence in the 1950s with composers Lejaren Hiller, Iannis
Xenakis, Gottfried Michael Konig and others. One simple, yet very interesting ex-
ample is the use of John Conway’s “Life” algorithm [Gar70] to compose music. One
branch of this very broad area of algorithmic composition focuses on style-oriented
music generation. The goal is to devise algorithms or train models that can make
computers produce music of a defined style.

Music generation from statistical models can be viewed as a series of sampling
operations on a distribution [Con03]. So the distribution essentially models features
of the music that is generated from it. The same distribution, when viewed as a
representation of musical style, can be used in applications related to music infor-
mation retrieval, score completion, audio mosaicking, etc. Research in this direction
may also contribute to more reliable measures for musical similarity and would help
get valuable insights into musical improvisation and composition.

Such work finds applications in musical ambiance generation in public places
such as malls, restaurants and museums. It can be applied in education for musical
training, compositional assistance and creation of new ideas for music composition.
For example, Allan et al. [AW04] developed a system that automatically generates
chorale harmonizations based on those composed by Johann Sebastian Bach. A
system that is able to generate such novel musical ideas in the form of a score can
be of great assistance in music training and compositional assistance for amateur
musicians and students of music. It can be used, for instance, to extract a list of
commonly occurring motifs or musical patterns in a certain style of music or works
of a certain composer. These examples can then be used as a starting point to train
students in composition of a certain style. The work of Cope [Cop96] serves as an
excellent example of something that can be used for such an application.

Music therapy involves activities such as singing along, music improvisation,
etc. where this type of technology can be useful. For example, Pachet’s Continu-
ator [Pac03] was applied to create an uplifting and cheerful mood among children
who were very amused at the idea of a computer “responding” musically to some-
thing that they played on an instrument. This idea of carrying out a “musical

1.2. MOTIVATION 7

conversation” with a system that responds favourably to a given musical stimulus
could have positive effects on subjects, in a similar way, who attend a music therapy
session. This is, however, in no way claimed to be a replacement to a conversation
with a therapist, but only an interesting alternative.

Algorithmic composition tools in the form of programs and software for the
computer also facilitate a shift of focus of the composer from fine details to broader
picture. Rapid compositional prototyping tools such as RapidComposer [Mus11]
already allow for such possibilities from computer software with features like au-
tomatic phrase, rhythm and chord generation. It is sufficient if there exists an
idea in the mind of a composer about what he wishes his composition to convey
and how he wishes it to sound as long as there is a suitable means (an interface)
for him to communicate this to a machine. Another popular application of auto-
matic music generation is in generating soundtracks for computer games. Context-
specific music generation in games had been widely used by LucasArts in their
games with the help of a system known as iMUSE [LM94]. There have also been
some computer-based composition software in the past like Band-in-a-box [Ban11]
and Impro-Visor [GTK10] that have been quite popular.

Several musical styles rely on reusing and transforming existing audio material
to create new music. One could say that this trend of juxtaposing different audio
segments to make music was born around the year 1942 in Pierre Schaeffer’sMusique
Concrète. This was the beginning of electroacoustic music, which is essentially
music resulting from the manipulation of recorded or generated sound, emanating
from loudspeakers, without an obvious human performer. The same concept has
henceforth been adopted in numerous musical genres. A very well-known example
of this is the hip-hop genre where, what are known as samples are extensively used
as the basis for musical composition. These samples are essentially audio segments
extracted from earlier songs which can be repeated, morphed or juxtaposed with
other samples to create backdrops, themes, accompaniments, lead voices, etc. in
making new songs. One extremely popular sample, known as “Amen Break”, is a
brief drum solo that occurs in the song Amen, Brother by the 1960s funk and soul
outfit The Winstons. It has, for years, been used in numerous Hip-hop, Beakbeat
and Pop songs.

The work presented in this thesis may be understood as stochastic composi-
tion in a Musique Concrète-like synthesis setting. This can be clarified further by
dividing the entire process into two stages - analysis and generation. The initial
analysis stage of the work involves, firstly, segmenting the audio signal and ex-
tracting pitch(or interval) sequences that make up the melody, and then quantizing
them into appropriate clusters. Once such a quantized sequence is obtained, the
variable-length Markov chain model is trained with it to build a probability distri-

8 CHAPTER 1. INTRODUCTION

bution of subsequences that occur within it. This distribution is, simply speaking,
a representation of the “style” of the melody.

Now during the segmentation stage, a collection of audio segments, each of which
is an individual note in the melody, is also obtained. The generation stage essentially
involves sampling a note at each time instant from the probability distribution for
a subsequence, that has occurred in the immediate past, according to the learned
Markov chain model. Once a sequence of notes has thus been sampled, appropriate
audio segments are selected and juxtaposed to give the generated melody. The
scope here, however, is a special case among methods that reuse or transform audio
material to create new music (such as Musique Concrète) that is limited to audio
consisting of monophonic melodies of the guitar and the bass-guitar.

Chapter 2

State-of-the-Art

“With the aid of electronic computers, the composer becomes a sort
of pilot: pressing buttons, introducing coordinates, and supervising the
controls of a cosmic vessel sailing in the space of sound, across sonic
constellations and galaxies that could formerly be glimpsed only in a
distant dream.”

-Iannis Xenakis

Every model used for algorithmic composition is restricted by its nature. A
model provides the composer with a specific methodology, a set of tools and intuition
for composition. There can be variations in different parts of a model that may
generate music of different types. In order to better highlight the specificities and
novelties of attempts thus far in style-specific algorithmic composition, the entire
process may be viewed in three stages: (1) Segmentation (2) Representation &
Generation (3) Evaluation. Although every individual approach reviewed has had
a different scope and application, it has contributed to one or more of these stages,
and such a division of the process would help in organizing the approaches more
clearly while keeping the general idea of the entire process intact.

2.1 Segmentation

Audio information from a source (a voice, a musical instrument, an orchestra, etc.)
must be translated into a suitable format that can be processed by a computer.
The options available at this stage are either to directly use the audio signal, or a
symbolic representation based on MIDI or text. The latter does not require any

9

10 CHAPTER 2. STATE-OF-THE-ART

segmentation of data available in the signal. Owing to the lack of a means to
interface audio sources directly with a computer in the past, early approaches relied
mainly on feeding it textual information. For example, the Illiac Suite of Hiller &
Isaacson [HI59] was composed with a system of LISP programs that took an input
stream of alphanumeric characters which represented a bass-line.

Majority of the recent approaches have used the MIDI representation for com-
municating musical information [Pac03], [Pai08], [Bil94], [Cop96]. This medium
is preferred because one may avoid issues related to possible inaccuracy in seg-
menting audio data. and focus solely on the stylistic aspect of music. Moreover,
the availability of various MIDI instruments for melody and percussion also makes
these approaches feasible. However, it must be noted that, at the same time, the
flexibility of such systems is also very limited to only a few instruments that are
MIDI-compatible. Moreover, interfacing such systems with audio signal information
would impair their performance when presented with a slightly imperfect input as
a result of segmentation. However, such assumptions could still be considered valid
when considering polyphonic data due to higher complexity of the audio signal.

The approach in this thesis proposes a more general framework that takes as
input, directly, an audio signal (monophonic) and segments it into atomic compo-
nents that serve as a basis for feature extraction. Marchini [Mar10] demonstrated
a similar system in the context of generating rhythmic variations of a percussion
track audio. This system was flexible and robust to audio recorded from several
percussive sources such as drums, beat-box, etc. In the same spirit, Jehan [Jeh05]
uses an intermediate minimal data representation directly obtained from the audio
signal based on perceptual listening, for analysis and synthesis.

2.2 Representation & Generation

This is possibly the most important stage from the point-of-view of generating
stylistically meaningful music. It is important to first have a set of instructions or
rules that can describe logically or statistically the musical goal in focus. In the
context of computer-based music generation, the task lies somewhere in between
two extremes. Hiller and Isaacson note that most musical compositions reflect a
balance between the extremes of order and disorder, and that stylistic differences
depend to a considerable extent upon fluctuations relative to these two poles [HI59].
The choice of representation used for music generation is the key to achieving this
balance depending on the context. As noted earlier, there are broadly two ways of
approaching the problem of computer-based music generation (1) Deterministic (2)

2.2. REPRESENTATION & GENERATION 11

Stochastic. Each of the approaches described below fall either strictly under one of
these categories or combine aspects of both.

Probably the most popular example where computers are made to imitate musi-
cal style is David Cope’s system called “Experiments in Musical Intelligence” (EMI).
EMI analyses the score structure of a MIDI sequence in terms of recurring patterns
(a signature), creates a database of the meaningful segments, and learns the style
of a composer, given a certain number of pieces [Cop96]. His system can generate
compositions with surprising stylistic similarities to the originals.

What has come to be known as Evolutionary Music involves solving problems
by evolving a population of potential solutions to a problem, using standard genetic
operations like crossover and mutation, until an acceptable solution emerges. This
is based on the fundamental idea of how a genetic algorithm works. The generation
process starts with a set of audio data (a piece, melody, or loop), which is initialized
either randomly or based on human input. Then through the repeated application of
computational steps analogous to biological selection, recombination and mutation,
the aim is to produce more musical audio. An example of such a system developed
for composing Jazz solos is GenJam [Bil94].

The Markov chain, owing to the fact that it incorporates sequential information
into musical prediction, has been a frequent choice in research. Allan [All02] applies
a HMM-based framework for harmonizing Bach chorales where the visible states
are melody notes and the hidden states are a sequence of chords that would suggest
possible harmonizations. A visible melody line is emitted from a hidden sequence
of harmonies and the model also predicts three further notes at each time-step, one
for each additional musical line in the harmonization. This is an example of the use
of first-order Markov chains.

The approach by Paiement divides the task of melody generation into two parts:
(1) rhythm generation and (2) melody generation on the generated rhythm. A
rhythm is represented in terms of note onsets, note continuations and silences. A
novel distance model, that uses Hamming distance to measure how similar two given
rhythms are, is used to represent the rhythmic evolution of a melody over different
constant-length time segments [Pai08]. Given the rhythmic sequence of a melody,
the system uses an HMM trained on these distance sequences to predict a new se-
quence. A 5-tuple simplified Narmour feature, as proposed by Schellenberg [Sch96],
is extracted from every set of three consecutive MIDI values of the melody. Another
HMM is trained on this Narmour feature sequence, given the rhythm sequence. Fi-
nally, given this Narmour feature sequence, and a chord progression, a melody is
generated using an IOHMM.

One major restriction on such HMM-based methods is imposed by the amount

12 CHAPTER 2. STATE-OF-THE-ART

of training data required for learning aspects of musical style with HMMs. It is
known that, in general, HMMs require a large amount of training data to be able
to effectively generalize information, especially with increasing order, which also
determines the performance of the model. The approach presented in this thesis
employs an efficient and parsimonious tree-based representation of the variable-
order Markov chain that can be utilized even in the presence of very limited training
data. Talk of this representation now brings us to another recent and interesting
experiment of Pachet which is known as The Continuator [Pac03].

The Continuator is intended to be a “Collaborative Musical Instrument”. This
system operates on short melodic phrases owing to the author’s observation that
Markov chains are (1) good at generalizing and learning musical style and (2) poor
at representing long-term information. Various available MIDI parameters are used
to obtain its symbolic representation with the help of a reduction function that
parses a given input phrase based on various musical aspects such as pitch, velocity,
duration, etc. or a combination of these. Sequences of symbols thus generated
are parsed using an incremental parsing algorithm to train a variable-order Markov
chain that maintains various possible sequences of symbols and their probabilities
of occurrence. The system progressively learns more and more phrases from the
musician to eventually develop a more accurate representation of her/his style.

Following a similar method, Marchini et al. [MP10] developed a system for the
analysis of the structure and the style of a percussive audio sequence with the
aim of generating an “arbitrarily long musically meaningful and interesting sound
sequence with the same stylistic characteristics as the original”. The framework
was developed around a variable-length Markov chain that is used to predict and
re-shuffle musical events. Applying various clustering thresholds simultaneously on
segments obtained by onset detection, a multi-level discrete representation of the
sound sequence is obtained. Then a regularity estimation of the levels is performed
to determine the levels of refinement where regular time patterns appear. The
periodic events are then used to estimate events, tempo, and meter. Based on this
information, the Markov chains are used to generate continuations.

The classic paper by Assayag et al. [ADD99] discusses a dictionary-based pre-
diction for automatic composition. Two dictionaries, namely, the “Motif Dictio-
nary” and the “Continuation Dictionary” are used to represent and continue a
given melody. The motif dictionary is composed of “motifs” which are elementary
units that make up a melody. The continuation dictionary makes use of the motif
dictionary information and estimates the probability of a single symbol (from the
motif dictionary) continuing each motif minus the last symbol in it. A generation
algorithm is used for continuation of a (so far) predicted sequence. A “context”
variable is maintained which determines the maximum previous sequence to con-

2.3. EVALUATION 13

sider while making the prediction. The prediction is based on whether the context
matches any of the motifs in the continuation dictionary. The probabilities in the
continuation dictionary are used to choose the next symbol. Upon lack of any choice,
the algorithm either stops or picks a symbol at random.

A multiple-viewpoint approach towards music prediction through the use of sev-
eral Markov chains (each corresponding to a viewpoint) was proposed by Conklin et
al. [CW95]. In this system, a collection of independent views of the musical surface
each of which models a specific type of musical phenomena are used to train differ-
ent Markov chains from data, which are then used for prediction. This method is
applied to Bach chorales to generate new pieces. One obvious question that may
be raised in regards to such a method is its musical meaning. Musical composi-
tion/improvisation involves intricate interplay between different musical phenomena
(“viewpoints”, in this context) rather than each one occurring separately by itself.
For instance, the occurrence of notes in a melody of a certain style depends very
much on the meter of the song which, perceptually speaking, determines at what
metrical positions the listener perceives which notes. This combined information
helps determine, for example, which mode a melody is in. Assuming independence
between such facets of music, while possibly allowing for greater variation, also
results in the loss of style-specific information.

The current approach uses a cross-product representation between pitch and
metrical position (covered in 4) that, while limiting the number of possible contin-
uation choices at a certain time instant, is also faithful to the element of style.

2.3 Evaluation

Once a symbol sequence has been generated according to a model on the computer,
it has to be converted into an appropriate sound sequence (melodic, percussive,
etc.) as musical output. Moreover, once the music has been generated, the question
arises as to how one evaluates it. The frequently differing methods of evaluation
employed on music generation systems have led to some stating that “this is a
largely ignored aspect of research into algorithmic composition” [PW01]. There exist
both objective and subjective measures to evaluate music generated by computers.
Objective evaluation relies purely on certain formulae to determine the musical
quality of output. A definite criterion, that helps objectify performance, is defined
and how much the musical output adheres to this criterion is measured. That
being said, the artistic nature of the output in the context of music generation
creates room for subjective opinion as well. These are typically carried out via
questionnaires provided to experts or naive listeners, as the situation demands. In

14 CHAPTER 2. STATE-OF-THE-ART

this case, neither can be said to be better than the other and one must select an
evaluation method that best suits the situation. A brief discussion on the question
of evaluation of music composed using statistical models can be found in [Con03].

An example of an objective evaluation criterion can be seen in the work of
Paiement [Pai08]. Here, a 100% accuracy is associated with a replication of the
original melody. That is, depending on the note-to-note similarity of the generated
melody to the originally presented melody, it has a higher or lower score. The prob-
lem with this type of evaluation is that it ignores the aesthetic value of the generated
music. Using such a scheme, even those continuations which sound pleasing, but are
symbolically dissimilar to the original would have a low score. Moreover, this is not
the ideal evaluation scheme where one wishes the generation to vary in comparison
to the original. It would seem more appropriate to consider a range of the defined
“accuracy” to judge its goodness as a trade-off between originality and replication
rather than going by the absolute performance measure which would favour the
replication of the original melody.

The Continuator, being a collaborative musical instrument, was evaluated not
only on the quality of music generated by it, but also on the possibly new modes
of collaboration that it can help achieve. The author outlines various modes of
collaboration such as single & multiple autarcy, master/slave, etc. that demonstrate
the collaborative capabilities of the system. These capabilities themselves serve as
a measure of the efficacy of one important aspect of the system. In addition to this,
the musical quality of the system is evaluated with the Turing test where listeners
are presented with a melody and asked to identify which has been played by a
human and which one by the Continuator. It is also noted that the system passes
the test only in the case of certain specific kinds of melodies. While the Turing test
does indeed seem to be a very suitable way of evaluating the output of this thesis, it
was not considered due to the fact that the generation, which involved transforming
the original audio, often contained several synthesis artefacts in its timbre, tempo,
etc. that would make the result obvious. With the correction of these artefacts not
being the main focus of this work, the Turing test was avoided in this context.

From a probabilistic perspective, generating music similar to a given style can
fundamentally be viewed as sampling from a distribution that is representative
of the style [Con03]. Thinking along this line, one can possibly conclude that the
nature of the chosen representation would greatly influence the musical output of the
system. Based on this idea, a suitable judgement criterion for assessing the goodness
of the model used for generating music is to measure how likely the composers
original music is with respect to the model. In the Bach-chorale harmonization
system in [All02], they look at how high a probability the model assigns to Bach’s
own harmonizations given the respective melody lines. So a high probability of

2.3. EVALUATION 15

Bach’s own chorales in the model would be a good sign that the model was able to
generalize to Bach’s style quite well. The author believes that these figures allow the
model’s performance to be directly compared with that of any future probabilistic
harmonization system. In a similar way, a generation system that models musical
style can also be trained with a multitude of styles and used as a classifier. This
is what is has been done in the case of the Audio Oracle [DAC07]. For each style
there is a different trained model, and new pieces of music are classified according
to how likely it is for either model to produce this particular musical output. In the
present situation, although this mode of evaluation is suitable, it is not used due to
the absence of a large amount of data that would be required.

As one can see, there are several possibilities available for evaluating this type
of work. The choice of an appropriate evaluation scheme depends on the important
aspects of the work in question. As demonstrated by Marchini et al. [MP10], one
may evaluate the system using feedback from experts. This would require the
opinions of either professional musicians or even experienced listeners who have
some idea of music theory, similarity, etc. Their system was evaluated by two
professional percussionists. Each expert was presented with a questionnaire that
asked about the performance of specific features of the system. Whether the musical
goals of the system were achieved or not was assessed based on the response to this
questionnaire. A similar scheme of evaluation was employed in this work as well. It
shall be covered in more detail in Chapter 6.

16 CHAPTER 2. STATE-OF-THE-ART

Chapter 3

Segmentation

The segmentation stage involves extracting appropriate features from the given
input for presenting to the generation algorithm. It converts the raw input data
into low-level features that will serve as the basis for further analysis. In this work,
the starting point is the signal corresponding to the melody read from an audio file
in WAV format. This chapter describes the segmentation process that it undergoes
prior to generating a mid-level representation using machine learning.

This section describes the stages involved in segmenting a given input melody
to obtain low-level features that describe individual notes that make up the melody.
The note segmentation process proceeds in two distinct steps (1) Onset Detection
(2) Pitch Estimation.

3.1 Onset Detection

After the choice of input modality (as electric/bass guitar) has been made, a given
melody played by this instrument is to be segmented into a sequence of notes or
comparably short segments which form the atomic units that would be used for
generation. On experimenting with different methods available for onset detection
such as the Kullback-Leibler method, and those based on spectral difference, phase,
energy, complex domain methods, etc., it was found that the onset detection based
on complex domain [DBDS03] worked better than the rest for the chosen input
modality. A detailed review and comparative study on different methods for on-
set detection, which served as a useful guide in making this choice, is available
in [BDA+05]. The Aubio toolbox by Brossier [Bro06] contains implementations of

17

18 CHAPTER 3. SEGMENTATION

a variety of onset detection algorithms, with the facility to adjust various algo-
rithm parameters. The features of this toolbox can be integrated with Matlab code
through the Sonic-Annotator command-line interface [Can11].

3.2 Onset Cleaning

Following onset detection, it was found that, while the chosen algorithm was able to
detect note onsets fairly accurately, it also presented a problem of multiple detections
in quick succession. Such misdetections often arose due to the guitar-pick or the
guitarist’s finger scratching against the string. It was observed that such multiple
detections typically lied within a time-gap of around 100ms. As a post-processing
step for the onset detection, a time-based onset cleaning step was introduced, where,
if more than a single onset occurred within a time-span of 100ms, only the first one
would be considered as a valid onset and the rest would be removed. Another onset

32.4 32.6 32.8 33 33.2 33.4 33.6 33.8 34 34.2 34.4
−1

0

1

Time (s)

A
m

pl
itu

de

Initial Onset Detection

32.4 32.6 32.8 33 33.2 33.4 33.6 33.8 34 34.2 34.4
−1

0

1

Time (s)

A
m

pl
itu

de

Time−threshold based Onset Cleaning

32.4 32.6 32.8 33 33.2 33.4 33.6 33.8 34 34.2 34.4
−1

0

1

Time (s)

A
m

pl
itu

de

Energy−threshold based Onset Cleaning

Figure 3.1: Different stages involved in onset detection and cleaning for an example
segment of an audio signal. The first row shows the original onset locations. The
onsets depicted in green-dashed lines are removed using the time-threshold. The
second row shows the onset locations after this time-threshold based cleaning. The
onsets depicted in blue lines are removed using the energy-threshold. The third row
shows the final remaining onsets.

cleaning step was based on signal energy. In certain cases, (almost) silent segments

3.3. PITCH ESTIMATION 19

were detected as separate notes. As it makes no sense in the pitch estimation of
such silent segments, those segments that fell below an energy threshold of 40% of
the average signal energy throughout the melody, were merged with the previous
non-silent segments. Figure 3.1 illustrates the steps involved in onset detection.
The onset detection also tends to overlook smooth changes in notes such as those
due to a slide, hammer-on or pull-off as the onset is not strong enough. These are
not considered as errors and are handled in the same way as those segments with a
single note detected within it.

3.3 Pitch Estimation

The onset detection gives us possible candidates for notes. As only monophonic
melodies are dealt with here, the features are based on pitch. The YIN algorithm
[dCK02] is used for this purpose. Once again, the implementation of this algorithm
available in the Aubio toolbox was used. Pitch detection is applied to each segment
between two consecutive onsets and this yields a value for the pitch of the segment.
For simplicity, the assumption here is that each segment between two consecutive
onsets contains only one note. For example, if there exist pitch-bends, legatos
where some of the note changes could not be detected, etc. in a segment, the pitch
of the entire segment would be that of the initial time following the onset. This
was determined by explicitly testing the pitch-estimation feature of the toolbox on
these specific cases. An example output of the pitch estimation process is shown in
Figure 3.2. As illustrated here, the onset detection is not ideal and there do exist
missed onsets which are indicated here. Among those onsets that were missed, only
those that signify the beginning of a riff are indicated due to their relatively greater
importance. Pitch estimation is also susceptible to octave errors. As the reader
may already be familiar, such errors involve the estimated pitch being an octave
above (“too high” errors) or an octave below (“too low” errors) the actual pitch.
An intrinsic part of segmenting the audio signal is to determine the correct set of
parameter values for the onset detection and pitch estimation algorithms. Sonic
Annotator provides a means to specify various parameter values for both. Several
combinations of values were tried out, with the goal being a global set of parameters
that work reasonably well for all the chosen data. Table 3.1 details the final values
that were arrived at, and used for note segmentation.

In the end, the segmentation stage yields a set of onset times t = (t1, t2, . . . , tN)
with associated pitches p = (p1, p2, . . . , pN).

20 CHAPTER 3. SEGMENTATION

0 2 4 6 8 10 12 14 16 18
2.45

2.5

2.55

2.6

2.65

2.7

2.75

2.8

2.85

Time (s)

lo
g

2(F
0)

V
al

ue
s

Onset Detection & F
0
 Estimation

Pitch Contour

Figure 3.2: Pitch detection using YIN for a section of the intro bass-riff of the
song Calling Dr. Love by the hard-rock group Kiss. The vertical dotted-lines refer
to onset locations. Red signifies the beginning of each riff. Magenta indicates riff
beginnings that were not detected.

Parameter Value
Pitch Type 1 (“yinfft”)
Step Size 512
Block Size 2048
Max Pitch 127
Min Pitch 0
Onset Type 1 (“complexdomain”)

Peak Pick Threshold 0.5
Silence Threshold -65

Wrap Range 0
Avoid Leaps 1

Table 3.1: The final set of parameters used for note segmentation with aubionotes.

Chapter 4

Representation

“...computer music systems are not neutral. Every system constrains
musicians to a restricted set of operations; every view on a piece is a filter
that biases the viewer’s attention to a particular perspective. Indeed,
the holy grail of a “universal” representation is antipodal to creative
music. Music is constantly evolving, so perhaps one should not pray for
a definitive solution to the questions of music representation.”

-Herbert Brün

The segmentation stage, as described in Chapter 3, segments the input audio sig-
nal (ideally) into individual note segments and estimates a pitch value corresponding
to each of these segments. Following the generation of this low-level representation,
a higher level representation is derived from it that converts the sequence of pitch
values into symbols for training the variable-length Markov chain. This approach
explores two such high-level representations using (1) Pitch Clustering (2) Interval
Quantization.

4.1 Pitch Clustering

At the present stage, we are given a sequence of pitch values (in Hz) as detected
by the YIN pitch detection algorithm. This is depicted in Figure 3.2. We are faced
with the problem of determining which notes these frequency values, estimated for
each inter-onset segment, correspond to. This is owing to the fact that we do not
assume any prior information about temperament, instrument tuning, number and
pitch of scale notes or octave information of the given frequency values (in the case

21

22 CHAPTER 4. REPRESENTATION

of equal temperament for example, a B3, E1, F#2, etc.). Moreover, while two
frequency values may correspond to the same note, the detected frequency values
are not identical to each other, but are very closely spaced.

Firstly, the pitch values (in Hz) are transformed into a logarithmic scale (of base
2) in order to apply a linear distance measure to cluster them. Grouping of similar
pitch-values is realized using agglomerative single-linkage clustering. This yields
a dendrogram representing their nested grouping and levels at which groupings
change. That is to say, at the bottom of the dendrogram, each leaf-node corresponds
to an individual log-pitch value. This corresponds to the finest similarity threshold
value. At the root node, this value is maximum and all pitches are grouped into
a single cluster. This gives us a coarse-to-fine (top-to-bottom in the dendrogram)
cluster representation of the pitch data. Figure 4.1 shows example dendrograms for
one of the songs from the input database. As the log-pitch values are scalar, the
absolute value of their difference is used as the distance measure for linkage. For a
review of the clustering algorithm employed here and a more detailed background
on the topic, the reader is referred to [JMF99].

The above described method for clustering yields clusters at multiple distance-
threshold levels. Often these are too many in number, all of which cannot be
used. This necessitates selecting the level that corresponds to the “ideal” number
of clusters. The task of determining the best number of clusters for a given data
distribution is one that has received much attention over the years in a variety of
research areas. Milligan & Cooper review the performance of 30 different criteria
for this purpose in [MC85]. The variance ratio criterion (VRC) [CH74] that was
verified as one of the more effective one in their analysis was chosen to be applied
in the present context. This method estimates “the best sum-of-squares split” of
the dendrogram using the Within-Group Scatter Sum (WGSS) and Between-Group
Scatter Sum (BGSS). The idea is to have clusters that are well-separated (high
BGSS) and, at the same time, compact (low WGSS).

4.1.1 The Variance Ratio Criterion

An explanation of the VRC for scalar-valued data is as follows. Suppose that we have
a set of n individual log-pitch values P = {p1, p2, . . . , pn} in a one-dimensional Eu-
clidean space. These can be represented by the n×1 data vector p = (p1, p2, . . . , pn)
with the ith row given by the log-pitch value pi. Thus, the clustering of these n pitch
values will be given by the partition of the rows of p. Without loss of generality, it
may be assumed that the center of gravity of the total n points is zero. Thus, the
total scatter matrix of the n points is given by

4.1. PITCH CLUSTERING 23

T = pTp =

n
∑

i=1

pTi pi

Now, suppose that we have a partition of the n log-pitch values into g groups
with n1, n2, . . . , ng values in each group, such that n =

∑g

i=1 ni. Then, for the kth

group the row-elements of p, plk (for l = 1, . . . , nk) represent the log-pitch values in
group Gk. One can now define the scatter for each group Gk with center of gravity
ck by

wk =

nk
∑

l=1

(plk − ck)
T (plk − ck).

The pooled within-group scatter is defined by

w =

g
∑

k=1

wk.

The between group scatter is defined by

b =

g
∑

k=1

nkc
T
k ck.

Hence, for each partition (at each clustering level) of the n log-pitch values into
g partitions, we have the following identity

t = w + b.

What has been described here in the case of one-dimensional log-pitch values
may be extended to a general case of n-dimensional data. This is clearly detailed
in [FR67]. However, in this case, since the total scatter matrix t is fixed, a natural
criterion for grouping is to minimize w. This is equivalent to maximizing b. The
Variance Ratio Criterion (VRC) uses the values of b and w at each clustering level
to find “the best sum of squares split” of the dendrogram by evaluating

V RC =
b/(g − 1)

w/(n− g)
.

24 CHAPTER 4. REPRESENTATION

The VRC is an increasing function of the number of clusters. It is suggested
in [CH74] that those numbers of clusters g (at certain clustering levels) be chosen
for which the VRC has an absolute or local maximum, or at least a comparatively
rapid increase (steep slope). Depending on the case, either situation might occur.
And also that if there exist several local maxima, the most economical choice would
correspond to the smallest value of g. Following this suggestion, in the present case,
these conditions are evaluated in an order such that the local maxima are given
the first preference starting with the level containing the least number of clusters,
followed by the slope (only if no local maxima occur).

The log-pitch value cluster-levels that are the VRC maxima are sorted in in-
creasing order of the number of clusters (or slope, if that be the case) and the top
C levels are chosen. In the experiments, a value of C = 4 was used. This is done,
firstly, as there is no a priori knowledge of the correct number of pitch-clusters that
actually occur in the melody and as the VRC only provides an estimate of the best
clustering levels. Secondly, selecting multiple cluster-levels also provides us with
more patterns at different (coarse-to-fine) levels to learn from the data. This will be
explained in more detail later in Chapter 5. It is not necessarily the case that each
obtained cluster contains frequencies corresponding to a single note. The similarity
threshold corresponding to each selected level determines the precision of clustering.
For instance, among the selected levels, the one that contains the least number of
clusters is more likely to have grouped two or more consecutive frequencies (that
may even correspond to different notes) into the same cluster. The clustering only
provides an abstract representation of notes at each level (henceforth referred to as
note-unit). The number of note-units, depending on the melody, typically varied
between 3 at the coarsest level (level 1) up to 30 in the finest level (level 4).

4.2 Interval Quantization

It was shown by Kim et al. [KCGV00] that rhythmic, and more importantly in the
context of this work, melodic contour based on an interval representation was effec-
tive in order to identify melodic similarity. Their approach involves computing the
contour of a given melody using only a few quantization steps to indicate the change
of notes. The approach described here aims at deriving a similar representation.
However, the difference being that, while in the case of [KCGV00], depending on
the number of quantization steps, interval boundaries are pre-determined, the cur-
rent representation approaches this problem in a data-driven manner for sequence
generation.

For example, if Q is a vector used to represent different contour resolutions and

4.2. INTERVAL QUANTIZATION 25

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Log−pitch Value

D
is

ta
nc

e
T

hr
es

ho
ld

6.3
40

9
6.3

41
6.3

59

6.4
06

9

6.2
31

8

6.2
30

4

6.2
25

1

6.2
20

9

6.1
90

3

6.6
10

9

6.7
68

2

7.0
28

8

5.7
06

4

5.7
27

8

5.7
23

6

5.7
61

5

5.6
70

5

5.6
23

3

5.8
51

9

5.5
21

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Log−pitch Value

D
is

ta
nc

e
T

hr
es

ho
ld

6.3
40

9
6.3

41
6.3

59

6.4
06

9

6.2
31

8

6.2
30

4

6.2
25

1

6.2
20

9

6.1
90

3

6.6
10

9

6.7
68

2

7.0
28

8

5.7
06

4

5.7
27

8

5.7
23

6

5.7
61

5

5.6
70

5

5.6
23

3

5.8
51

9

5.5
21

1

Figure 4.1: An illustration of the dendrogram yielded by agglomerative single-
linkage clustering of the first 20 log-pitch values of the bass-line of the song Hysteria
by the rock group Muse. In the top figure, clusters obtained with a distance thresh-
old of 0.06 (8 clusters) are highlighted in different colours (with black being the
case where the leaf node is its own cluster). While in the bottom figure, the same
is shown when the threshold is 0.02 (13 clusters).

26 CHAPTER 4. REPRESENTATION

quantization boundaries, the length of Q indirectly reveals the number of levels of
contour being used, and the individual values of Q indicate the absolute value of
the quantization boundaries (in number of half-steps). Q = [0 1] represents that
interval changes are quantized into three levels, 0 for no change, + for an ascending
interval (a boundary at one half-step or more), and for a descending interval. This
representation is equivalent to the popular +/−/0 or U/D/R (up/down/repeat)
representation. Similarly, Q = [013] represents a quantization of intervals into five
levels, 0 for no change, + for an ascending half-step or whole-step (1 or 2 half-steps),
++ for ascending at least a minor third (3 or more half-steps), − for a descending
half-step or whole-step, and −− for a descent of at least a minor third. It was
also observed in their experiments that a 5-level representation (such as the one
mentioned above) was effective in achieving some of the best results. However, the
criterion for setting the interval boundaries in their approach, it must be noted, is
manual.

This work adopts the quantized-interval representation of [KCGV00] for gener-
ating the continuation of a melody based on variation of its interval contour. A clus-
tering approach will be explored for automatically determining boundaries for quan-
tizing intervals based on the characteristics of a given melody. Such an approach
can also, possibly, be extended to large databases containing similar melodies. Such
a representation is also considered advantageous as, often, pitch-detection informa-
tion extracted from audio files carries with it a small amount of noise about the
actual value of the pitch of a note. An approach such as the one described below
would help smooth-out such noisy information.

Following the segmentation process described in Chapter 3, we have a sequence
of pitch-values in Hz. These are transformed into a logarithmic scale (of base 2)
in order that equal differences in perceived pitch values are equal at different fre-
quencies. Then, a sequence of intervals is obtained by taking the difference between
consecutive log-pitch values. With this, negative values would indicate descending
pitch-contour, while positive values would indicate ascent. We use the K-means
clustering with a symmetry constraint (by manually selecting the value of K) in
order to cluster the intervals. As the features being used here are one-dimensional
interval values, it is expected that such a clustering method would provide a solution
to the interval quantization boundary estimation problem at hand by obtaining the
representation described in [KCGV00].

Although this representation was implemented, due to the limited time available
for the completion of this work, it could not be evaluated as in the case of the pitch
representation. Hence, only a theoretical explanation of the method is presented.

4.3. METRICAL ANALYSIS 27

4.2.1 K-Means Clustering with Symmetry Constraint

As the name suggests, this method involves applying a K-means clustering over the
interval values. The intervals are grouped into 3, 5 and 7 clusters. This would
result in grouping of interval sizes progressively from large negative (descending) to
near-zero (constant pitch or a very small change in either direction) to large positive
(ascending). In addition to this, there is also a symmetry constraint imposed on the
clustering. That is, the boundaries of clustering are assumed to be symmetric on
either side of the cluster corresponding to a zero-interval (in the ideal case). To do
this, the sign associated with the interval (ascending/descending) is first discarded
and only its size is considered. On the resulting interval values, for example, if a
5-cluster representation is desired, a K-means clustering is performed with K = 3.
This gives the boundaries in the positive (ascending) interval direction, which are
then simply mapped in the negative (descending) direction about the zero-interval
cluster to give 5 quantization levels. In experiments, the values of K are manually
set in such a way that 3, 5, 7 and 9 quantization levels are obtained. Boundaries
thus obtained are then used to quantize different interval values at multiple (in this
case, 4) levels.

4.2.2 Interval-Pitch Matrix

A quantized-interval only gives us the approximate relation between two notes, but
in no way the notes themselves. Assuming that we are given the note that precedes
the interval, we need some kind of a mapping function that would help choose an
appropriate set of notes that would follow the first one. We define an Interval-Pitch
Matrix that, given an initial pitch and a quantized-interval that follows it, indicates
the possible choices for the next pitch. Following this, various constraints are applied
over these available choices to narrow down on a suitable pitch depending on the
context.

The interval representation was implemented and also used for generating melodies,
but owing to limited availability of time, could not be fully evaluated.

4.3 Metrical Analysis

Every melody has an underlying rhythm that gives it a certain structure according to
a beat or metrical grid. Some of the prior approaches model the rhythmic structure
of a melody explicitly to use the information while generating continuations [Pai08,

28 CHAPTER 4. REPRESENTATION

Pac03]. This section describes the process of deriving the symbolic representation
for the underlying rhythm of the melody. In the present approach, the onset times of
the different notes in the melody are used to determine this rhythmic structure at an
appropriate metrical level. What is meant by “appropriate” here will be explained
below. While the rhythm is dealt with separately during this process, it shall be
explained in Section 4.4 how the representation thus derived for the rhythm will be
combined with that of the notes (or intervals) to obtain a joint representation that
will be used to train the variable-length Markov chain.

The idea here is to obtain a sequence of symbols that represent metrical locations
(for example, from the set M = {1, 2, 3, 4}, for a meter of length 4) that correspond
to the locations of note onsets in the melody. The method can be best explained

Figure 4.2: The underlying rhythmic structure of an arbitrary melody where the
’X’s indicate onset locations.

with the aid of an example. Consider the rhythm represented by the sequence
of symbols in the lower row of Figure 4.2. Here, each X denotes the presence of
an onset and 0 indicates the absence of one (a rest). The assumption is that the
time-gap between successive symbols is equal. As can be seen, each pair of notes is
separated by an arbitrary time-gap (a multiple of the time-gap between successive
symbols). The upper row shows an imaginary sequence of metrical weights aligned
with the rhythm as reference, for the sake of clarity. The “appropriate” metrical
level mentioned earlier refers to the metrical level where the IBI (in this case, the
temporal gap between 1 and 2, 2 and 3, etc.) is as small as the temporal gap between
a pair of onsets that are closest to each other. A meter of length 4 is assumed here.
The task at hand is to label the onsets of the lower row (symbolize them) according
to the metrical positions in the upper row of Figure 4.2. It essentially generates a
sequence of symbols (from the set M = {1, 2, 3, 4}, in the current example) that
indicates where an onset occurs in a beat sequence at the finest temporal resolution
required to coincide the beats with every onset in the melody.

As the first step for metrical analysis, the beat-detection algorithm as proposed
by Dixon et al. [Dix01] is applied to the given melody. The Java implementation of
this algorithm, known as BeatRoot [Dix07] is used for generating a beat sequence
underlying the given melody at an arbitrary metrical level. The metrical level at
which beats are detected is assumed to be at the coarsest temporal resolution, which
is the starting point for the method. For the example rhythm under consideration,

4.3. METRICAL ANALYSIS 29

such a beat sequence is depicted in the third row of the first grid in Figure 4.3.
Each “1” indicates the beat location. It is to be noted that the beat detection
algorithm may yield a beat sequence at a different metrical level as well. It can

Figure 4.3: Iterative representation of the process that determines the metrical lo-
cations of each of the onsets in the melody by progressively increasing the resolution
of the underlying metrical structure.

be seen in the first grid of Figure 4.3 that some of the onsets (in red) coincide
with the generated beat-sequence, which corresponds to the metrical location “1”.
The procedure from here on is to progressively halve the inter-beat-interval (IBI),
that is, to progressively increase the resolution of beats by a factor of 2 until all
of the onsets coincide with a beat. This process is illustrated in Figure 4.3. In
each iteration, the metrical location (indicated in the first row of every grid) of the
onset that coincides with a beat is noted. In this way, we get a sequence of metrical
locations that correspond to onsets of the melody.

However, in an real-scenario, detected onsets are not exactly coincident with the
generated beats. To handle this, for each onset, it is checked whether it lies within a
certain threshold in time from a beat closest to it. Following the approach of [Dix01],
which relies on perceptual studies for discrete perception of closely spaced notes,
this threshold was set to 70ms. So, in each iteration of the algorithm, the resolution
of the meter is doubled and onsets that lie within a range ±70ms of a beat at that
resolution are considered to be a match with it. This process is repeated until at

30 CHAPTER 4. REPRESENTATION

least 90% of the onsets are matched with beats as it was found that, at times, the
IBI tends to become as small as 140ms (a trivial case when the match threshold is
±70ms) for all the onsets to be matched. This would be too small an IBI.

Another interesting issue that arises here is the possibility of confusing a metrical
location with one that occurs integer times a measure away from that location.
Consider the first 8 symbols of the example of Figure 4.2 (measures 1 and 2), shown
in Figure 4.4. The above described method for getting a sequence of metrical

Figure 4.4: A section from the example that illustrates the limitation of the metrical
analysis method.

locations would give us the sequence (2, 4) for this section, but the information
about the measure to which these locations belong is lost. In this representation,
one could assume that the two onsets are in the second and fourth metrical positions
of the same measure. That is, if we wish to re-generate an onset sequence from the
metrical locations determined by the algorithm, we would get what is shown in
Figure 4.5. The result of this error would be an incorrect variation of the actual
tempo of the melody in the representation. To handle such a case, initially, a simple

Figure 4.5: A section from the example that illustrates the limitation of the metrical
analysis method.

workaround was proposed. The assumption was that it would suffice as long as we
are able to reproduce these measure considerations not in the exact, but a rough
sense while generating a melody from the example. That is, the overall trend of
how often a certain metrical location symbol that follows another is in the same or
a different measure as the first is to be maintained. First, a look-ahead variable is
defined that determines the upper-limit on the number of measures after which the
next metrical location can occur. This value is derived from the specific melody
and is equal to the number of measures corresponding to the longest note duration
in it. Presently, the lookahead variable’s value is assumed to be 2 for explanation.
Next, conditional probability distributions of the form p(m|l) are defined, where,

4.3. METRICAL ANALYSIS 31

m = {0, 1, 2} refers to the measure for the case where the look-ahead variable is 2.
Each distribution essentially defines the probability of the next onset occurring m
measures away from the current onset, given that the current onset is on a metrical
position l. In the example of Figure 4.4, the metrical location “4” occurs m = 1
measures after the metrical location “2” (a “0” would mean the same measure).
Here, l = 2 as the metrical location of the current onset is “2”. It is now possible









1/2 1/2 0
0 1 0
1 0 0
0 1 0









Figure 4.6: The Measure Matrix for the example in Figure 4.2. Each row corre-
sponds to a metrical position 1, . . . , 4, and each column corresponds to a measure
0, . . . , 2.

to define a l × m matrix A, where ai,j = p(j|i) according to the above definition.
For the example in Figure 4.2, the matrix A is shown in Figure 4.6. So given that
we have a generated sequence of metrical locations, we determine the duration of
a note corresponding to the current metrical location depending on the metrical
location of the next note and the number of measures after which it occurs (that is
determined by the Measure Matrix).

In practice, however, this representation performs rather poorly by producing
notes that are often either too long or too short. Moreover, this representation also
counters the reason for using Markov chains for representing the rhythm structure
of the melody. The VLMC in this context aims at achieving as sort of “variable
memory” representation where symbol sequences of different lengths would represent
different memory lengths. For such a representation to be theoretically correct, it
is also necessary that each pair of consecutive symbols are equally spaced in time.
This is to ensure that a sequence of, say, n symbols always corresponds to the same
duration of time tn seconds. If this condition isn’t satisfied, a sequence of, say n
symbols, could refer to any arbitrary duration of time. The previously described
representation suffers from this drawback.

Hence, as an improvement over the previous representation, a slight modification
of it is used. As explained previously, correspondence between onsets and beats is
established in much the same way. The main difference here is that, while in the
previous representation, only onset locations are assigned a symbol value, in the
improved representation, rests (metrical position where there is no onset) are also
assigned a symbol value. For example, like in the previous example, say we consider

32 CHAPTER 4. REPRESENTATION

V/M 1 2 3 4
0 1 2 3 4
1 5 6 7 8

Table 4.1: A depiction of the symbolic representation for rhythm when the assumed
meter length is 4. Here, M = {1, 2, 3, 4}, V = {0, 1} and R = {1, 2, 3, 4, 5, 6, 7, 8}.

a meter length of 4 where the symbols for each metrical location are denoted by
M = {1, 2, 3, 4}. Now, we also consider two additional cases, denoted by V = {0, 1},
where 0 indicates the presence of an onset and 1, the absence of it. We obtain a
symbolic representation R as a cross-product M×V of these two sets of values as
shown in Table 4.1. In this representation, a symbol is generated corresponding to
every beat (at the final metrical level where at least 90% of the onsets match with
beats) irrespective of whether there exists an onset there or not. For example, at
metrical location 1, the symbol assigned when there is a rest, is 1. While, when
there is an onset, the assigned symbol is 5. More generally at a homogeneous time
instant i, given a metrical location mi ∈ M, and a onset-type symbol value vi ∈ V,
the cross-product rhythm symbol ri of these two can be written as the ordered pair

ri = (mi, vi)

This symbolization scheme is implemented at multiple meter-length levels, namely
1, 2 and 4. At each level, the number of symbols for representing the rhythm is
twice as many as the meter length itself. This representation also has the advan-
tage that it is homogeneous in time and, hence, a uniform representation of the
variable-length memory concept that is desired to be achieved using the VLMC.
This essentially means that a sequence of metrical location symbols (learned or
generated) in this representation are equally spaced in time. For the example onset
sequence in Figure 4.2, the derivation of a symbol sequence according to this new
method is shown in Figure 4.7. Once again, the starting point is the metrical level
corresponding to the detected beats. Here, only a few onsets are matched with the
beats. Then, iteratively the IBI is halved to get a new set of beats that will match
with more onsets. The criteria for termination here, as before, is a match between
the beats and at least 90% of the onsets.

4.4 Final Melody Representation

Sections 4.1, 4.2 and 4.3 described how, individually, note and rhythm patterns
of the melody are captured. In order to finally represent the entire melody, two

4.4. FINAL MELODY REPRESENTATION 33

Figure 4.7: Illustration of the iterative process that determines the time-
homogeneous metrical symbols of each of the onsets (and rests) in the melody by
progressively increasing the resolution of the underlying metrical structure.

possible options are explored (1) Disjoint VLMCs for rhythm and notes (2) A single
VLMC using a combined representation.

4.4.1 Disjoint Representation

This served as an intermediate step prior to obtaining the combined representation
(described in Section 4.4.2 that was musically more sensible and indeed produced
better results). In the disjoint representation, the idea was to use two independent
Markov chains, one for generating a rhythm sequence and the other for generating an
interval/pitch sequence. This approach is similar in spirit to that of [Pai08, CW95].

In this method, a symbolic representation of the underlying rhythm of the
melody was generated much in the same way as described in Section 4.3. Alongside
this, the symbol sequences of pitches/intervals in the melody were also generated.
Each of these sequences was then used to train a different VLMC, one for rhythm,
and another for either pitches or intervals. The idea was to first generate a sequence
of rhythmic symbols of a certain length. Then those symbols corresponding to onset
locations in the generated rhythm symbol sequence were enumerated. Then, a se-

34 CHAPTER 4. REPRESENTATION

quence of intervals or notes (depending on the representation in use) of length equal
to the number of onset locations in the generated rhythm sequence, is generated.
As noted earlier, this method, while producing more variations, is not musically
meaningful as the combined representation that is explained next.

4.4.2 Combined Representation

The representation indicated in Table 4.1 is obtained as a cross-product between two
sets of values, one corresponding to metrical locations and the other to the presence
or absence of onsets at a metrical location. In a similar way, the final representation
also relies on such a cross-product representation between the symbols generated for
intervals/pitches and those generated for the homogeneous rhythm representation
described in Section 4.3. This section describes the representation.

Consider a set of symbols R = {r1, . . . , rR} that represent R homogeneous met-
rical symbols generated for a set of metrical locations M = {m1, . . . , mM}, where
R = 2M . And let N = {n1, . . . , nN}, a set of N elements that represents the pitch
clusters, or similarly, interval quantizations. The combined representation essen-
tially involves generating the set S = {s1, . . . , sS} such that S = N × R. This
would result in a total of S = N · R symbols. For example, if the metrical length
M = 4, then R = 8 and R = {1, 2, 3, 4, 5, 6, 7, 8}. And say the interval quantiza-
tions are Q = {−−,−, 0,+,++}, then N = 5 and N = {1, 2, 3, 4, 5}. Therefore,
the number of symbols in the combined representation would be S = 40.

While this is the general idea of the combined representation, it assumes two dif-
ferent interpretations with the interval and pitch representations respectively (with
the rhythm representation being common to both).

Combined Pitch-Metrical Representation

In the case of the combined pitch-metrical representation, the assumption is that
a new pitch occurs at a homogeneous time instant where there is an onset and
extends until the next onset. Hence, at a certain homogeneous time instant i, given
the pitch cluster value pi and rhythm symbol value ri, the cross-product symbol
value si between the two can be given by

si = (ri, pi)

4.4. FINAL MELODY REPRESENTATION 35

1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 9 10 11 12 13 14 15 16
3 17 18 19 20 21 22 23 24
4 25 26 27 28 29 30 31 32

Table 4.2: A depiction of the combined representation for pitch and rhythm when
the assumed meter length M = 4 (columns) and number of pitch clusters is N = 4
(rows).

For example, say at a certain clustering level, there exist 4 pitch clusters (N = 4).
Given a meter length M = 4 (which means R = 8), Table 4.2 gives the matrix of
symbols.

Unlike the case of intervals in Section 4.4.2, all the symbols in the matrix of
Table 4.2 are possible, and hence, the number of symbols S is given by

S = N ·R

where the number of pitch quantizations is N and meter length is M (R = 2M).

Combined Interval-Metrical Representation

In the case of the combined interval-metrical representation, it is assumed that an
interval can occur only at a homogeneous time instant (explained in Section 4.3)
that immediately precedes that of an onset. In every other case (where an onset
does not occur), a zero-interval is assumed. That is, at a homogeneous time instant
i, the value ni of the interval is given by

ni =

{

k ∈ {1, . . . , N} if onset at time (i+ 1)
0 if rest at time (i+ 1)

Hence, if ri and ni are the homogeneous rhythm symbol and quantized interval
values at homogeneous time i respectively, the cross-product symbol si of these two
is given by the ordered pair

si = (ri, ni−1)

As an example, consider the case where the meter length M = 4 (hence R = 8),
and the quantized interval representation Q = {−, 0,+} (which means N = 3). In

36 CHAPTER 4. REPRESENTATION

N /R 1 2 3 4 5 6 7 8
1 (−) 1 2 3 4 5 6 7 8
2 (0) 9 10 11 12 13 14 15 16
3 (+) 17 18 19 20 21 22 23 24

Table 4.3: An illustration of the combined-representation for intervals and meter
when the assumed meter length (columns) is M = 4 (Table 4.1) and interval quan-
tization (rows) is {−, 0,+}.

this case, firstly, the homogeneous cross-product representation for the rhythm is
given by Table 4.1. Next, a cross-product between these and the interval quantiza-
tion symbols is taken according to Table 4.3

More generally, at homogeneous time i, the cross-product symbol value ci (cor-
responding to the ordered pair si above) for the metrical symbol ri, the pitch cluster
(or interval quantization) symbol ni, given a meter length M , is given by

ci = (ii−1 − 1) · R + ri

It is to be noted here that not all symbols in the final cross-product occur in
any given sequence. This is because, we do not assume the presence of a non-
zero interval (+, −−, etc.) unless there is an onset. Hence, those symbols that
correspond to a non-zero interval and a rest (absence of an onset) will never occur
in the sequence. For example, in Table 4.3, the symbol values 1, 2, 3, 4, 17, 18, 19
and 20 will never occur in a sequence. Hence, given N interval quantizations and a
meter length of M , the maximum number of symbols S ′ that can occur in a given
sequence is not N ·R, but can be given by

S ′ = (N + 1) ·M

This completes the description of the symbolic representation. In summary,
firstly, a metrical symbol is obtained as a cross-product between the metrical loca-
tion (of a time-homogeneous representation with a given meter length) and the type
of onset (onset or rest). Following this, the final melody symbol is obtained as a
cross-product of the metrical symbol and interval quantization/pitch cluster symbol.
This process is repeated at multiple levels of meter length, interval quantizations
and pitch clustering. Symbol sequences thus generated from the original pitch-value
sequence are used for training the VLMC that is then used for generation.

Chapter 5

Generation

“Music is composed, to an important degree, of patterns that are
repeated and transformed. Patterns occur in all of music’s constituent
elements, including melody, rhythm, harmony, and texture. ”

-R. Rowe

One may define musical style in several ways. There are often external, non-
musical factors that come into play (theme, musical era, cultural factors, etc.) while
regarding a piece of music as belonging to a certain style. The analysis employed here
relies only on the application of statistics and information theory to the segmented
monophonic melody in order to identify the style. Here, style can be seen as the
prevalence or the occurrence of certain characteristic melodic patterns along with
rhythmic ones that make the melody sound the way it does. The Markov chain,
from its definition and prior usage in other domains such as text and speech, serves
as a suitable statistical model for modelling temporally changing (musical) patterns.

Here, one must return to the interpretation of music as a stochastic process that
was introduced earlier in Chapter 1. Modelling the style of music can be translated
into the problem of identifying the mechanism of the stochastic process, or more
generally, the information source generating the music. As a continuation of what
has been introduced in Chapter 1, this chapter provides a theoretical background
of stochastic processes, Markov chains and their application to this work. The
following description closely follows that of [Mar10].

37

38 CHAPTER 5. GENERATION

5.1 Stochastic Process

Let (Ω,F , P) be a probability space and X a finite alphabet (a set whose elements
are called symbols). A stochastic process is a series (Xn)n≥0 of random variables
Xn : Ω → X ∀n ∈ N. Moreover, the process is stationary if P (X1 = a1, . . . , Xn =
an) = P (X1+k = a1, . . . , Xn+k = an) ∀a1, . . . , an ∈ X , ∀k, n ∈ N.

A particular case of a stochastic process is a Markov chain. In the context of
this work, the stochastic processes is the Markov chain.

5.2 Markov Chains

A Markov chain is a “chance process” [GS97] in which the predictions for future
experiments are influenced by the outcomes of previous ones. The relation between
two consecutive experiments is referred to as a transition, and the nature of these
transitions is determined by what is known as the transition nucleus of the particular
Markov chain. Hence, to explain a Markov chain the concept of the transition
nucleus is to be introduced first.

5.2.1 Transition Nucleus

Let (Ω,F) be a measurable space and X a finite set. We define a discrete transition
nucleus in X any real function

N : X × X → [0,∞]

such that:
∑

y∈X

P (x, y) = 1 ∀x ∈ X (5.1)

If X is a finite set with n elements (|X | = n) X = {x1, . . . , xn}, a discrete
transition nucleus N on the set X is completely determined by the real n × n
matrix (ai,j)i,j=1,...,n where the generic element ai,j is equal to N(xi, xj). Such a
matrix is called transition matrix for the nucleus N and, vice versa, an n×n matrix
such that the sum of the elements on each row is 1 uniquely determines a transition
nucleus.

In theory, it can be said that every single past outcome until the current experi-
ment plays a role in determining that of the current one. In practice, however, it is

5.3. HOMOGENEOUS MARKOV CHAINS 39

assumed that the influence is limited to only O previous outcomes. The value O is
known as the order, or length of the Markov chain. The homogeneous Markov chain
is a specific case of the Markov chains that will first be introduced before going on
to the variable-order Markov chains used in the present work.

5.3 Homogeneous Markov Chains

Let (Ω,F , P) be a probability space equipped with a filtration, i.e. a non decreasing
sequence Fk of σ-algebras1 in F .

Definition: Let (Xk)k≥0 a series of random variable with values in X (with the
measure of the discrete space). The series is said to be a homogeneous Markov chain
of nucleus N if it is adapted to the filtration (i.e. for all k ≥ 0 the random variable
Xk is Fk-measurable) and moreover the following equation holds:

P (A,Xk = a,Xk+1 = b) = P (A,Xk = a)N(a, b) (5.2)

for all k ≥ 0 and for all the possible choices for the event A in Fk and for all a, b ∈ X .

If B is a subset of X , then by posing

N(a, B) :=
∑

b∈B

N(a, b) (≤ 1 for 5.1) (5.3)

we have
P (A,Xk = a,Xk+1 ∈ B) = P (A,Xk = a)P (a, B). (5.4)

Where the latter is the more general formulation of equation 5.2. In the case of
the event {A,Xk = a} having a non-null probability, Equation 5.4 can be re-written
in terms of conditional probability as

P (Xk+1 ∈ B|A,Xk = a) = P (a, B). (5.5)

The relation 5.5 states that the position of the system at time (k+1) conditioned
on an event of type {A,Xk = a}, where A is in the past of k, it is given by P (a, ·)
and does not depend on the choice of A. To summarize, once the actual position is

1Intuitively, the elements of Fk represent the events of the past history up until the time k

included. In other words, by knowing the history of the system up to time n included, one can

claim with certainty if the generic event A ∈ Fk occurred or not.

40 CHAPTER 5. GENERATION

known, any other information on the past history does not change the distribution
for the next state.

More generally, it is possible to define non-homogeneous Markov chains where
the nucleus N in 5.2 depends on k, but for sake of simplicity, these will also be
referred to in terms of homogeneous Markov chains. Moreover, it is possible to
define Markov chains of order m where the distribution over the next state only
depends on the last m positions. It is, however, possible to see a m-order Markov
chain as a first order Markov chain built on an alphabet made of vectors of length m
with components in X . For example, a second order Markov chain can be translated
into a first order one by substituting the series:

. . . a0, a1, a2, . . . , ak, . . .

with the following
. . . a−1a0, a0a1, a1a2, . . . , ak−1ak, . . .

and the new nucleus is defined by:

N(x1x2, y1y2) =

{

0 if x2 6= y1
P (X2 = y2|X0 = x1, X1 = x2) otherwise

5.4 Variable Length Markov Chains

Let X be the usual finite alphabet, a set of strings over the alphabet X is defined
as the set

X ∗ :=
⋃

k≥0

X k

whose elements are called strings. Note that by convention X 0 = {e} where e is
the void string.

Let (Xt)t∈Z be a time-homogeneous Markov chain of order m with values in X .
The symbol xj

i represents the following string (written in reversed order)

(xj , xj−1, . . . , xi)

where i < j, i, j ∈ Z∪{−∞,+∞} and where wu = (w|w|, . . . , w2, w1, u|u|, . . . , u2, u1)
is the concatenation of the strings w and u.

From these introduced conventions,

P[X1 = x1|X
0
−∞ = x0

−∞] = P[X1 = x1|X
0
−m+1 = x0

−m+1], for all x1
−∞. (5.6)

5.5. TREE REPRESENTATION OF VLMCS 41

The concept of the variable-length Markov chain (VLMC) can be seen as re-
grouping of several states x0

−m+1 in 5.6.

5.4.1 Context Function

Let (Xt)t∈Z be a stationary process with Xt ∈ X , |X | < ∞. Moreover, let c : X∞ →
X∞ be a function such that:

c : x0
−∞ 7→ x0

−ℓ+1,where ℓ is defined by

ℓ = ℓ(x0
−∞) = min{m;P[X1 = x1|X

0
−∞ = x0

−∞] = P[X1 = x1|X
0
−m+1 = x0

−m+1]

for all x1 ∈ X},

and the case ℓ = 0 holds when there the next state is independent from the context.
(5.7)

Then, c(·) is called context function and for all t ∈ Z, c(xt−1
−∞) is called context

for the variable xt. The context is precisely the part of the past that influences the
current value.

Let (Xt)t∈Z a stationary process where Xt ∈ X , |X | < ∞ with corresponding
context function c(·) as before. Let 0 ≤ m ≤ ∞ be the smallest integer such that

|c(x0
−∞)| = ℓ(x0

−∞) ≤ m for all x0
−∞ ∈ X .

Then c(·) is called context function of order m, and if m < ∞,the process (Xt)t∈Z
is called variable-length Markov chain (VLMC) of order m.

The VLMC (Xt)t∈Z will henceforth be referred to with its law Pc (in the space
X Z). Moreover, if P is a probability measure over X Z, the following notations will
be used,

P(x) := PP [X
m
1 = x] (∀x ∈ Xm)

P(x|w) :=
P(xw)

P (w)
.

5.5 Tree representation of VLMCs

Because of the homogeneity a VLMC Pc is completely determined by the following
transition probabilities:

PPc
[X1 = x1|X

0
−∞ = x0

−∞] = p(x1|c(x
0
−∞)), x1

−∞ ∈ X∞.

42 CHAPTER 5. GENERATION

e

0 1

0

0 1

1

Figure 5.1: Context tree of the function c(·) in the example.

The states determining such transition probabilities are given by the image of the
context function c(·). It is convenient to represent those states in the form of a tree.

The trees here contain a root node on the top with branches growing from top
to bottom. From each node a maximum number of |X | branches are growing. The
tree is built in such a way that each value of the function c(·) : X∞ →

⋃n

k=0X
k

is represented by a terminal node. The context w = c(x0
−∞) can, in fact, be found

in the tree starting from the root node and following branch given by x0, then the
sub-branch given by x−1 and so on until the sub-branch determined by x−ℓ(x0

−∞
)+1

is reached. The resulting tree is not necessarily complete i.e. the nodes of the tree
might have any number of branches equal or less then |X |.

The following context function:

c(x0
−∞) =















0, if x0 = 0, and for any x−1
−∞

1, 0, 0, if x0 = 1, x−1 = 0, x−2 = 0, and for any x−3
−∞

1, 0, 1, if x0 = 1, x−1 = 0, x−2 = 1, and for any x−3
−∞

1, 1, if x0 = 1, x−1 = 1, and for any x−2
−∞

is represented by the tree of Fig. 5.5.

A formalization of the above is presented here.

Let c(·) be the context function of a VLMC stationary. The contextual tree τ is
the set:

τ = τc = {w;w = c(x0
−∞), x0

−∞ ∈ X∞} = c(X∞),

and its elements are called nodes. The “topology” of such a tree (the interconnection
between the nodes in τ) is given by the following rule in ω, ω̃ ∈ τ :

ω̃ is child of ω ⇐⇒ ∃σ ∈ X : ωσ = ω̃.

This rule is recursively applied to generate the nodes of the tree, following which
all the possible missing prefixes of the strings in τ are added including the void prefix

5.6. APPLICATION TO THE SYSTEM 43

e. Thus, a tree with root node e where the nodes of level i are strings in τ with i
symbols is obtained. For the context function c of example 5.5, the case is as follows

τc = c({0, 1}∞) = {0, 100, 101, 11}.

Addition of all the prefixes gives

τ̃ = {e, 0, 1, 10, 11, 100, 101}

where, with rule 5.5 it implies that 0 and 1 are sons of e, 10 and 11 are sons of 1,
100 and 101 are sons of 10. Thus, the tree of Figure 5.5 is constructed.

5.6 Application to the system

Having introduced the theory behind the variable-length Markov chains (VLMCs)
and their tree-based representation, their application in the statistical analysis of
the symbol sequence derived in Chapter 4 will be presented in this section. This
involves the induction of a VLMC from the obtained sequence of symbols.

In [BW99, RST96], a general method for inferencing long sequences is described.
The simplified implementation as described in [Pac03] is used here for faster com-
putation. As the intent is to experiment with multiple context-lengths, a tree is
constructed with the maximum expected context-length (or 32 symbols). Each
node of the tree represents a specific context that had occurred in the past. In
addition, as explained in [Pac03], each node carries a list of continuation indices
corresponding to block indices matching the context. This process is repeated for
all the different levels obtained after the cross-product (Section 4.4.2)

For audio, a different approach has been applied in [DAC07]. This method does
not require an event-wise symbolic representation since it employs the factor oracle
algorithm. The VLMC has not been applied to audio prior to the work of [MP10]
due the absence of an event-wise symbolic representation. Chapter 4 presents a
method to obtain such a representation, similar in spirit to that in [MP10]. Given
a symbolic representation, the statistical analysis of symbol sequences is explained
here with the aid of a simple example.

Assume that the tree of Figure 5.2 has been constructed from the symbol se-
quence of one level. A continuation of the sequence (A, B) is to be generated.
Starting at the root node, the tree is traversed considering the sequence of the given
context in reverse order (from the most recent state to the first). The following
continuation indices are available

44 CHAPTER 5. GENERATION

e

C{4}

B{4}

A{4}

B{3, 8, 7}

B{8}

A{8}

A{3, 7}

A{2, 6}

Figure 5.2: Context tree built from the analysis of the sequences (A, B, C, D) and
(A, B, B, C).

Continuation List((A, B)) = {3, 7}.

Those indices correspond to the symbols (C, B) respectively. To generate the con-
tinuation, one of these is chosen at random. Suppose the choice is B. Then the new
sequence is (A, B, B) which has the possible continuations

Continuation List((A, B, B)) = {8}.

At this point, there exists only one choice (index 8) corresponding to C. Thus,
there is now the sequence (A, B, B, C). Going a step further, we have to continue
using the longest context which is (B, C). We can only choose the index 4 as con-
tinuation. So we have obtained the sequence (A, B, B, C, D) that is a new sequence
that has never occurred in the examples provided. However, this does not have a
continuation either. When this happens, a simple and obvious solution is to use a
blank context e which means choosing randomly between all of the indices. There
is, thus, a “discontinuity” in the generation. A more elegant solution would be
to exploit the multi-level representation that is available. A generation strategy is
outlined which determines the choice to be made in case of such and exception.

5.7 Generation Strategy

If a particular level is fixed, the continuation indices are drawn according to a
posterior probability distribution determined by the longest context found. But the
question arises as to which level has to be chosen. Depending on the sequence, it
could be better to predict based either on a coarse or a fine level. But there is not
rule as to what should be preferred. A trade-off exists between the level and the
number of choices that it makes available. Selecting a lower level at which a context

5.8. INTERPRETATION 45

of at least l̂ exists (for a predetermined fixed l̂, usually l̂ equal 6 or 8). This works
quite well for many examples. But in some cases a context of that length does
not exist and the system often reaches the higher level where too many symbols
are provided inducing too random generations. On the other hand, it occurs very
often that a lower level is made of singleton clusters that have only one instance.
In this case, a long context is found in the lower level but since a particular symbol
sequence only occurs once in the whole original segment the system replicates the
audio in the same order as the original. This behaviour often leads to the exact
reproduction of the original until reaching its end and then a jump at random to
another block in the original sequence.

In order to increase recombination of symbols and still provide good continua-
tion, some heuristics are employed taking into account the multiple levels available
for the prediction. A recombination value p, in the range [0, 1] is also set. The
following heuristics are used to generate the continuation in each step:

• Set a maximal context length l̂ and compute the list of indices for each level
using the appropriate suffix tree. Store the achieved length of the context for
each level.

• Count the number of indices provided by each level. Select only the levels
that provide less than 75% the total number of symbols.

• Among these level candidates, select only the ones that have the longest con-
text.

• Merge all the continuation indices across the selected levels and remove the
trivial continuation (the next onset).

• In case there is no level providing such a context and the current block is not
the last, use the next block as a continuation.

• Otherwise, decide randomly with probability p whether to select the next block
or rather to generate the actual continuation by selecting randomly between
the merged indices.

5.8 Interpretation

The theory covered so far in this chapter explains the general idea of the VLMC with
some examples on how it can be applied in the context of generating new symbol
sequences from given examples. In the present work, there are two representations,

46 CHAPTER 5. GENERATION

namely, the pitch and the interval representations that are obtained from the audio
data for melody generation. Although the basis for generation in both these repre-
sentations is the same, which has been explained in this chapter so far, the present
section provides a brief note on the difference in their interpretations.

In the case where the VLMC framework is used to predict indices corresponding
to the combined pitch-metrical representation (Section 4.4.2), each predicted index
corresponds to a unique audio segment (or pitch) in the input melody. Hence, in
this case, the choice of the pitch is obvious given the index predicted by the VLMC.

However, in the case of the combined interval-metrical representation (Sec-
tion 4.4.2), it is not so straightforward. In this representation, every predicted
index corresponds to a quantized interval (such as ++, − or 0). This does not
directly correspond to an audio segment. Hence, while using the VLMC predic-
tions with this second representation, it would be necessary to have an additional
stage of selecting the audio segment, given the pitch of the previous time-step and
the current quantized interval. In such a situation, there will be several audio seg-
ments that satisfy this condition. One may apply additional constraints such as
those based on harmony, tessitura, etc. in order to narrow down the list of possible
choices before selecting one.

Chapter 6

Evaluation

“In the final analysis, randomness, like beauty, is in the eye of the
beholder.”

-R. W. Hamming

6.1 Database

The present work uses monophonic audio of guitar and bass-guitar melodies for the
analysis of patterns in them and in turn exploits this information to generate varia-
tions of these melodies. The use of audio data is mainly motivated from the fact that
a majority of related approaches in the past have skipped the stage of segmenting
musical information from audio and have focused specifically on labelled symbolic
representations such as MIDI. Recent approaches (among the few) that deal directly
with audio information in the context of music analysis for generation are the Au-
dio Oracle [DAC07], the works of Jehan [Jeh05] and Marchini [MP10]. Moreover, it
was thought that an assessment of how state-of-the-art segmentation methods and
those for analysis, which are often isolated from the process of segmentation, work
in conjunction would be beneficial. It would also be interesting to see in what way
these ideal-case analysis methods would have to be adapted/modified in order to
handle segmented audio data. Although this thesis focuses on only guitar melodies,
it is to be noted that the general method may be extended to other instruments
such as violin, piano, flute, etc. with appropriate modifications to parameters of
the segmentation algorithms used. Similar results may be expected in those cases
as well.

47

48 CHAPTER 6. EVALUATION

Song Artist Type Source Duration
More than a Feeling (1) Boston Riff Multi-track 0:23
More than a Feeling (2) Boston Riff Multi-track 0:21

Truckin’ (1) The Grateful Dead Solo Multi-track 0:23
Truckin’ (2) The Grateful Dead Riff Multi-track 0:19

Calling Dr. Love (1) Kiss Riff Multi-track 0:16
Calling Dr. Love (2) Kiss Riff Multi-track 0:07
Amazing Journey The Who Solo Multi-track 0:47

Sweet Child of Mine Guns N’ Roses Riff Recorded 0:15
Another Brick in the Wall Pink Floyd Solo Recorded 0:45

Hysteria Muse Riff Multi-track 0:20

Table 6.1: Database of melodies used for analysis.

The analysed database consists of a variety of pop/rock songs. These have either
been recorded earlier or obtained as multi-track recordings such that various instru-
ments in the recording are available as separate audio files. The main focus was on
bass-lines with some importance given to guitar/bass solos. Bass-lines usually had
a riff-like structure in which the same melodic segment repeats over a short period
of time (typically 2s to 5s) with minor (if not any) variations in each repetition.
Typically, each riff-type track contains around 4 repetitions of the riff. And solos
are long melodic phrases that don’t necessarily have an overall repetitive structure
like riffs. They are typically between 20s and 50s in length. Those melodies that
employ effects such as delay, distortion, reverb, etc. along with the instruments
were avoided for ease of segmentation. Table 6.1 lists the melodies that were used
for analysis and generation. The evaluation considered a subset of six of the ten
melodies in Table 6.1. These are listed in Table 6.2.

Song - Artist Instrument (type) Accompaniment
More than a Feeling (1) - Boston Bass (Riff) Yes
Truckin’ (1) - The Grateful Dead Bass (Solo) Yes
Truckin’ (2) - The Grateful Dead Bass (Riff) Yes

Calling Dr. Love (1) - Kiss Bass (Riff) Yes
Sweet Child of Mine - Guns N’ Roses Guitar (Riff) No
Another Brick in the Wall - Pink Floyd Guitar (Solo) No

Table 6.2: List of melodies used for evaluation.

6.2. ONSET DETECTION 49

6.2 Onset Detection

This section presents a summary of the evaluation of onset detection performed
on the six selected examples. The Aubio implementation of the complex domain
method for onset detection [DBDS03] was employed here. A detailed list of param-
eters used can be found in Table 3.1. The six melodies were of varying length and
contained a total of 331 onsets.

A precision-recall based method was used to determine the performance of on-
set detection. This is a commonly employed performance measure in information
retrieval tasks to measures how accurate, and at the same time, how exhaustive a
certain retrieval operation was. In this context, the data to be retrieved is the set
of onsets of the original melody. Precision is defined as

precision =
|L ∩ T |

|T |

and recall is defined as

recall =
|L ∩ T |

|L|

Where, L is the set of ground-truth onsets and T is the set of retrieved onsets.
Simply speaking, a high recall would mean that nothing has been missed but there
may be a lot of useless results to sift through (which would imply low precision).
High precision means that everything returned was a relevant result, but all the
relevant items may not have been found (which would imply low recall).

Using these two, a third measure, known as the f-Measure(fM), is defined as the
harmonic mean of the precision and recall.

fM = 2 ·
precision · recall

precision+ recall

Table 6.3 shows the evaluation of onset detection according to the described
measures, with an overall precision of 94.58%, recall of 86.42% and f-measure of
89.11%.This, although not perfect, could be considered satisfactory in the present
case. A discussion of the effects of missed and wrongly detected onsets on the
analysis that followed is presenting in Chapter 7.

6.3 Expert Evaluation

A subjective evaluation, based on the opinion of experts, was chosen to assess the
musical quality of the melodies generated by the current system. The qualitative

50 CHAPTER 6. EVALUATION

Track No. Precision Recall f-Measure Onset Count
1 1.0000 0.9375 0.9677 60
2 1.0000 0.9117 0.9538 31
3 0.9629 0.8387 0.8965 54
4 0.8923 0.9206 0.9062 65
5 0.8198 0.7280 0.7711 111
6 1.0000 0.7407 0.8510 20

Overall 0.9458 0.8642 0.8911 331

Table 6.3: Table illustrating the performance of the onset detection on the evaluated
examples.

assessment of some specific aspects of it was deemed ideal for evaluation here. A
quick summary of what is discussed in more detail in Chapter 2 in regards to the
preference for the present evaluation method is presented here.

An evaluation based purely on “accuracy”, as in the case of [Pai08], was deemed
unsuitable in the context of the current work as variations in the original melody
are a necessary condition here. A criterion that favours similarity with the original
melody would have an adverse effect on the performance in the presence of varia-
tions, and hence be against the point of having a system that aims at generating
melodic variations. Another option is a classifier-based evaluation, as that employed
by [All02, DAC07]. It involves using the generation system as a classifier and mea-
suring the accuracy of its classification of unseen data of different styles. However,
in the present case, due to the unavailability of sufficient amount and variety of
audio data required for conducting such an evaluation, it is avoided. The third op-
tion is a Turing test that determines to what extent a listener can be deceived into
believing that a melody actually generated by the system is that played by a human
(or vice versa). Such an evaluation method was used as a part of the evaluation
in [Pac03]. Due to unresolved issues related to synthesis artefacts occurring in the
output of the present system, the choice for the listener would become obvious and
hence this method is also avoided.

In the present work, it is required that certain specific aspects of the system,
such as metrical coherence, equivalence of tempo, occurrence of repeating patterns,
regularity of riff structure, etc. be evaluated. It was thought that such specific
aspects can be focused on in the evaluation through a questionnaire. Experts -
individuals with an educational background in music or extensive music performance
experience - were considered to be ideal candidates for providing feedback on the
quality of the generated melodies. Four experts were consulted for their feedback
on the output of the system. Each of them is either a professional/session musician

6.3. EXPERT EVALUATION 51

or holds a diploma in classical music or both.

A questionnaire (Figure 6.1) was prepared and presented to each of the experts
as a part of an evaluation package. The evaluation package contained six folders,
each containing a copy of the questionnaire, an audio file of the original melody and
another of a generation corresponding to the original. This number was intentionally
kept small in order not to lose the attention of the listener over the course of the
evaluation. Two recorded melodies and four multi-track melodies were used in the
evaluation. These are listed in Table 6.2. In the case of multi-track melodies, both
the original and the generation, which in all cases were bass-lines, were overlayed
with the guitar and drum tracks as in the original song. In each case, it was specified
in the instructions that the bass-line was to be focused on. This was not possible
with the recorded tracks and they were played in isolation. The experts were first
asked to listen to the original track any number of times until they developed a
fair idea of the melody. Following this, they were asked to listen to the generated
melody and answer the questionnaire.

6.3.1 Questionnaire

The questionnaire was prepared keeping in mind the different musical facets of the
melody that were handled in the method. It was considered to be of prime impor-
tance that, in the least, one can observe note sequences (patterns) from the original
melody from time to time in the generation. This is a distinctive characteristic
of Markov chains as compared to other statistical models. In contrast, a random
sampling method (which was also examined at an earlier stage of the work), while
maintaining the overall distribution of notes does not ensure that they occur in
order as in the original melody.

Once it has been confirmed that note segments from the original melody do
occur in the generation, the next question is at what locations in the melody do
they occur. As explained in Chapter 4, the metrical locations of different notes are
also included in the cross-product that generates the final symbolic representation
of note sequences. If this formulation works, it would imply that notes chosen for
the generation also occur in the correct metrical location. While the statement of
question 2 in Figure 6.1 applied to the guitar/bass solo case, it was modified in the
case of a riff as follows

“If you answered “Yes” to question 1, are these melodic patterns occurring in
such a way that a riff structure is evident?”

It is also important that the generation be of, more or less, the same tempo
as the original melody. This question was considered necessary due to the method

52 CHAPTER 6. EVALUATION

employed for metrical analysis. As explained in Section 4.3, the metrical level of
generation of the new melody is the same level at which at least 90% of the onsets of
the original melody are matched with beats. In this way, the tempo of generation is
typically twice or thrice the actual tempo of the original melody. It was considered
necessary to verify that, firstly, a stable tempo was observable in the generation,
and secondly, this tempo was, more or less, the same as that of the original.

Questions 4, 5 and 8 of the questionnaire go hand-in-hand. While the question
of how similar or interesting a generation seems is highly subjective and depends to
the great extent on the listener in question, it was found that the last question that
sought comments from her/him often had a response that helped understand the
listener’s understanding of similarity and the “interestingness” rating. In general,
it is hoped that the expert provides a high rating for the interestingness of the
generations and considers them to be “somewhat similar” or “very similar” to the
original. At times, a similarity rating of “very similar” could mean that there aren’t
sufficient variations in the generation as compared to the original. Question 8, once
again, helps clarify this opinion.

The question about synchrony mainly refers to the synthesis aspect of the gen-
eration. It is often the case that the chosen note and the duration assigned to it
in the generation are not equal. In such a case, the time-stretch library Rubber
Band [Rub11] was used to stretch/shrink the note to the appropriate duration. It
was observed that, on overlapping the generated melody with the tracks of other
instruments accompanying the original track, there were some occasions where the
synchrony between them is lost.

It was hoped that feedback from the experts based on this questionnaire would
help assess the musical quality of the generated melodies, and, at the same time
also provide some valuable insight into errors and room for possible improvements.
Table 6.4 summarizes the results of the expert evaluation which are analysed in
detail in Chapter 7.

6.3. EXPERT EVALUATION 53

Figure 6.1: The questionnaire presented to the experts for their feedback. This
questionnaire was to be answered for each of the original/generated melody pair.

54
C
H
A
P
T
E
R

6
.

E
V
A
L
U
A
T
IO

N

Patterns Patt. Occurrence Tempo Similarity Interesting Synchrony
Melody 1 (Sweet Child of Mine guitar riff)

Expert 1 Yes Appropriately Same Somewhat similar 3 N/A
Expert 2 Yes Inappropriately Same Very similar 3 N/A
Expert 3 Yes Appropriately Same Very similar 4 N/A
Expert 4 Yes Inappropriately Same Very similar 2 N/A

Melody 2 (More Than a Feeling bass riff)
Expert 1 Yes Always Same Very similar 2 Sometimes
Expert 2 Yes Appropriately Same Very similar 3 Sometimes
Expert 3 Yes Appropriately Sth. else Very similar 3 Sometimes
Expert 4 Yes Always Cannot be det. Very similar 3 Sometimes

Melody 3 (Truckin’ bass riff)
Expert 1 Yes Appropriately Sth. else Very similar 4 Sometimes
Expert 2 Yes Appropriately Same Somewhat similar 5 Sometimes
Expert 3 Yes Appropriately Same Very similar 5 Sometimes
Expert 4 Yes Always Same Very similar 5 Always

Melody 4 (Another Brick in the Wall guitar solo)
Expert 1 Yes Inappropriately Same Somewhat similar 1 N/A
Expert 2 Yes Appropriately Same Very similar 3 N/A
Expert 3 Yes Inappropriately Cannot be det. Very similar 3 N/A
Expert 4 Yes Appropriately Same Very similar 4 N/A

Melody 5 (Truckin’ bass solo)
Expert 1 Yes Inappropriately Sth. else Somewhat similar 1 (or) 5 Never
Expert 2 Yes Inappropriately Cannot be det. Somewhat similar 2 Sometimes
Expert 3 Yes Inappropriately Same Somewhat similar 3 Sometimes
Expert 4 Yes Inappropriately Sth. else Very similar 1 Sometimes

Melody 6 (Calling Dr. Love bass riff)
Expert 1 Yes Always Same Very similar 1 Sometimes
Expert 2 Yes Inappropriately Cannot be det. Very similar 2 Sometimes
Expert 3 Yes Always Same Very similar 4 Always
Expert 4 Yes Inappropriately Same Somewhat similar 3 Sometimes

Table 6.4: Expert Evaluation Results

Chapter 7

Discussion

The approach described in this thesis deviates from similar ones in the past [Pai08,
Pac03, DAC07] in that while these prior approaches start directly with MIDI input,
the present one contains an additional segmentation stage that transforms the input
signal into a relevant symbol sequence. The presence of this segmentation stage
produced some discrepancies in the expected outcomes at different stages of the
symbolization and analysis stages that followed, that also affected the final result.
This chapter discusses these discrepancies, how they were handled and relates them
to the musical output generated by the system. The impact of each of these on the
system varies, but they are covered here nevertheless for academic interest. Some
of them will also be used to explain the feedback received from the experts.

7.1 Onset Detection

One of the factors that contributes to the inaccuracy in the generation of a melody
is onset detection. As discussed in 6.2, not every note onset in the melody is
detected. This is due to the limitations of the onset detection method in use with
respect to the instrument at hand. The imperfect onset detection results in, firstly,
inaccurate onset locations and secondly, multiple notes being segmented as a single
note. The former, along with its consequence (discussed in Section 7.3), is illustrated
in Figure 7.2. The latter is illustrated in Figure 7.1. It affects the output by causing,
what is expected to be a single note chosen to be used in the generation, to be a
sequence of notes. It should be noted here that this creates an effect that, though not
ideally wanted, doesn’t necessarily affect the output in a negative way. Additionally,
it also has an impact on interval representation (see Section 7.2).

55

56 CHAPTER 7. DISCUSSION

36.3 36.4 36.5 36.6 36.7 36.8 36.9 37
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time (s)

A
m

pl
itu

de

p
1

p
2

p
3

Detected Onset

Missed Onset

Figure 7.1: Illustration of a case where a missed onset leads to a mistake in the
interval sequence. The actual interval sequence here is i1 = p2 − p1, i2 = p3 − p2.
However, when one onset (green) is not detected, the interval sequence becomes
i1 = p3 − p1.

7.2 Pitch Detection

Another possible place for errors is the pitch detection. While these errors are not
very prevalent on carefully setting the algorithm parameters, they do occur at times
and are worth noting as they affect the performance of the system. Pitch detection
errors are typically of two kinds. The first and most common are octave errors
(Section 3.3). As a result of octave errors, certain pitches are wrongly clustered
along with others that are nearly an octave apart. And during generation, if these
wrongly clustered pitches are selected, they result in an abrupt jump of a very large
interval from the previous pitch in the generated melody.

And secondly, there also seemed to be certain semi-tone errors. In such errors,
the estimated pitch differs from the actual pitch by a small amount, typically less
than or equal to a semi-tone. These errors, however, do not pose a very serious
problem to the method as clustering is performed for the symbolization of pitch-
values anyway which leads to the grouping of such segments with those nearest to
them in pitch.

7.3. BEAT DETECTION & ONSET MATCHING 57

7.3 Beat Detection & Onset Matching

The beat detection stage was necessary to get the underlying rhythmic structure of
the melody. In spite of a few missed onsets, the beat detection algorithm [Dix01]
detected the beat structure of the input melody fairly accurately. However, what
followed, namely, the process of matching onsets with beats relied heavily on the
accuracy of onset detection. This is becuase, the metrical positions at which notes
would be placed in the generation relies entirely on those positions to which onsets
are matched in the first place. For instance, if an onset that actually occurs on
metrical position 1 is detected with some amount of error. It is possible that this
onset is matched with a different metrical position, say 2. Such a case is illustrated
in Figure 7.2. If this happens, each time the note at this onset is selected in the
generation, it would be placed at metrical position 2, instead of 1. In this stage,
any onset that did not match a beat at the detected, or even a finer metrical level,
was discarded.

4.4 4.5 4.6 4.7 4.8 4.9 5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time (s)

A
m

pl
itu

de

Incorrect MatchCorrect Match

Actual Match

Figure 7.2: Illustration of a case where an onset is matched to the wrong metrical
position. Each of the circles indicates the ideal metrical locations. The green ones
indicate the metrical location 1. In the example, due to the early detection of the
onset, it is matched to the metrical location 4 instead of 1.

Another drawback of this approach for matching onsets and beats is that it can-
not detect triplet notes. However, as the detection resolution is successively doubled,
at one stage, if a triplet note onset is sufficiently close to a beat, it is matched to

58 CHAPTER 7. DISCUSSION

it. Triplets that are thus detected appear, not as triplets, but as a sequence of half
(quarter, eighth, etc. depending on the tempo) notes in the generation. This was
observed in some of the examples.

7.4 Pitch & Interval Representation

The motivation for using the pitch and interval representations as described in
Chapter 4 arises from the desire to use a data-driven approach to determine similar
sounding melodic events. These events can be pitches or intervals, both of which are
considered to be strong indicators of style [GKM03]. The multi-level representation
provides a coarse-to-fine grouping of these events and helps obtain symbol sequences
of the same. A more detailed review of some of the results of this clustering would
be informative and is presented here.

The clustering method applied on the pitches and intervals, being a data driven
one, is oblivious to any prior assumptions that can be made on the distribution of
notes in the melody. It is hoped that whatever be the nature of the distribution, it
would be captured to a fair amount of accuracy by the clustering process.The result
of the clustering process mainly varied with the length of the melodies. In this work,
the melodies used were typically ranging between 15 seconds and 1 minute.

Table 7.1 illustrates the clusters formed at four levels {L1, . . . , L4} chosen by
the VRC for an example melody. As one goes from L1 (coarse) to L4 (fine), in each
successive level, more clusters are formed by the division of those from the previous
level. This is a relatively short melody of 24 seconds in length and a similar trend
in clustering was observed with other melodies of similar lengths.

The variance ratio criterion aims at minimizing the within-group scatter while
maximizing the between-group scatter of a given data distribution (pitch distribu-
tion) that is to be clustered. It identifies those levels that best satisfy this criterion.
Pitches thus grouped together are those that satisfy the VRC. And as the clustering
approach employed is a purely unsupervised one that depends on the data, it was
observed that occasionally pitches that do not correspond to the same note are clus-
tered together. Again, this results in a variation when the segments corresponding
to these pitches are chosen (although a different pitch is expected). Although this
is not ideally desired, in the present generation context, it often works well.

In comparison to the pitch representation, the interval representation (that could
not be formally evaluated due to lack of time) seemed to have a more loose structure.
This arises from the fact that the continuation suggested by the Markov chain in
this case is an interval and not a note. The Interval-Pitch Matrix (see Section 4.2.2),

7.4. PITCH & INTERVAL REPRESENTATION 59

Pi L4 L3 L2 L1

50.38 1 1 1 1
52.61 1 2 2 2
52.69 1 2 2 2
52.73 1 2 2 2
52.97 1 2 2 2
53.29 1 2 2 2
53.47 1 2 2 2
53.70 1 2 2 2
54.63 1 2 2 2
54.93 1 2 2 2
55.23 1 2 2 2
56.36 1 2 2 2
56.48 1 2 2 2
57.18 1 2 2 2
58.88 1 2 3 3
59.01 1 2 3 3
60.69 1 2 3 3
60.82 1 2 3 3
63.63 1 3 4 4
69.16 2 4 5 5
69.21 2 4 5 5
69.25 2 4 5 5
69.31 2 4 5 5
69.33 2 4 5 5
69.43 2 4 5 5
69.65 2 4 5 5
69.83 2 4 5 5
69.93 2 4 5 5
72.43 2 4 6 6
75.15 2 5 7 7
75.89 2 5 7 7
76.80 2 5 7 7

79.89 2 6 8 8
80.74 2 6 8 8
80.89 2 6 8 8
80.93 2 6 8 8
80.97 2 6 8 8
81.03 2 6 8 8
81.03 2 6 8 8
81.14 2 6 8 8
81.26 2 6 8 8
81.39 2 6 8 8
81.58 2 6 8 8
81.64 2 6 8 8
81.70 2 6 8 8
81.70 2 6 8 8
81.71 2 6 8 8
81.71 2 6 8 8
81.81 2 6 8 8
81.81 2 6 8 8
81.87 2 6 8 8
81.91 2 6 8 8
81.94 2 6 8 8
82.53 2 6 8 8
84.72 2 6 8 8
87.31 2 6 9 9
91.50 2 7 10 10
91.58 2 7 10 10
91.68 2 7 10 10
101.50 3 8 11 11
102.30 3 8 11 11
103.93 3 8 11 11
108.24 3 9 12 12
108.77 3 9 12 12
122.85 4 10 13 13

Table 7.1: Illustration of pitch clustering at multiple (coarse-to-fine) levels of various
pitch values occurring in one bass-riff of the song “Truckin’” by the rock group The
Grateful Dead. Pi refers to a pitch value and Lj , (j = {1, 2, 3, 4}) refers to a certain
clustering level. One can see how pitch grouping changes with a change in level.

60 CHAPTER 7. DISCUSSION

along with further constraints on metrical position, harmony, etc. are used to narrow
down possible choices of notes, out of which one is chosen at random. This procedure
is subject to more variability when compared to the pitch representation, where each
continuation index corresponds to a single audio segment. A more detailed analysis
and evaluation of the interval representation could not be performed due to lack of
time.

7.5 Context length & Recombination factor

In the generation stage, two parameters that play a key role in determining the
nature of the generated melody are the context-length and the recombination fac-
tor. Whether a generation sounds very similar to the original or otherwise, from
the representation perspective, is solely determined by these two. Before further
explaining the significance of these parameters during generation, it would benefit
to go over some terms that will be used frequently in this section.

• Symbol Index: Following segmentation and time-homogenization of the au-
dio into a symbol sequence (see Chapter 4), each symbol in the sequence that
represents the original melody is associated with an index. The index corre-
sponding to each symbol gives its position in the original melody. For instance,
the first symbol in any melody would be assigned the index 1, the second the
index 2 and so on.

• Current Index: The current index is the index of the symbol at a certain
homogeneous time instant from where the continuation is being generated.

• Continuation Index: A continuation index refers to the symbol index that
is chosen as the continuation to follow the current index.

• Recombination Graph: A recombination graph basically shows how sym-
bol indices are chosen during melody generation. The Y-axis depicts time
in homogeneous time-steps. The X-axis contains symbol index values corre-
sponding to the original melody. In the case where the generation and the
original are identical, this graph would show a straight diagonal line starting
at the origin. In the same way, if there exists a sequence of consecutive in-
dices, these would also appear as a diagonal line in the recombination graph.
A choice of non-consecutive indices during generation is seen as a series of
“jumps” along the X-axis with increase along the Y-axis. (increasing homo-
geneous time-steps) Figure 7.3 shows an example recombination graph.

7.5. CONTEXT LENGTH & RECOMBINATION FACTOR 61

0 50 100 150 200 250
0

50

100

150

200

250

Original Indices

H
om

og
en

eo
us

 T
im

e

Recombination Plot − Truckin’ Bass Riff (r = 0.7)

Figure 7.3: The recombination graph for the generation best rated by the experts
(Grateful Dead - Truckin’).

The context-length specifies the maximum history (in terms of homogeneous
time-steps) that the variable-length Markov Chain (VLMC) would consider in or-
der to predict possible continuations. With reference to the theory of Chapter 5,
this parameter represents the maximum order of the VLMC. With the generation
algorithm currently being followed, the longer the context length, the more similar
the generation will sound like the original. This happens because when the context-
length for generation is increased, owing to the fact that the algorithm chooses only
those levels that correspond to the maximum possible context-length, the number
of choices that correspond to this longest context-length are also very few. Hence,
the continuation index given by the VLMC would, in most cases, be the same as
that in the original. The recombination graphs of Figure 7.4 show how an increasing
context-length affects the choice of continuation indices during generation.

In the experiments, context-lengths of 2, 4, 6, 8, 16 and 32 were used. What is to
be noted here is that not one context-length value was found to be ideal for all the
cases. The choice depended very much on the tempo of the melody. In the case of
riffs, for example, the context-length was found to be proportional to the duration
of the riff. Choosing an appropriate context-length in this way ensured that the
riff structure was preserved well. Too short a context-length resulted in broken riffs
and abrupt changes in between them. The only advantage of having a sufficiently
small context-length is that it would allow for variations, whose occurrence would be
even more scarce when the context-length is long. On an average, for the melodies

62 CHAPTER 7. DISCUSSION

0 100 200 300
0

50

100

150

200

250

300

Original Indices

H
om

og
en

eo
us

 T
im

e

Context Length = 8

0 100 200 300
0

50

100

150

200

250

300

Original Indices

H
om

og
en

eo
us

 T
im

e

Context Length = 16

0 100 200 300
0

50

100

150

200

250

300

Original Indices

H
om

og
en

eo
us

 T
im

e

Context Length = 32

Figure 7.4: An example of how change in context-length affects continuation index
selection in the generation. From left to right, it can be observed that there is an
increasing tendency for consecutive indices (less jumps).

considered in the evaluation, a context-length of 8 was found to be reasonably good.

The recombination factor here is a value that has the range [0, 1]. Its value
essentially determines the probability to continue with the continuation index of the
segment following the current one in the original melody. In the extreme case of the
recombination value being 0, the VLMC is completely ignored and the continuation
index is what immediately follows the current index in the original melody. Given
that one starts the generation with the first index of the original, this would result in
an identity between the generation and the original. Hence, a smaller recombination
value implies more similarity due to consecutive segments from the original melody
occurring more often in the generation. In the case that the recombination factor
is 1, only the continuation index suggested by the Markov chain is considered.
This case is, in fact, an issue which is the main reason for having this parameter.
Figure 7.5 shows how the number of discontinuous indices gradually decreases with
an increase in the recombination value (keeping context-length constant).

In the experiments, recombination factor values of 0.1, 0.3, 0.5, 0.7 and 0.9
were chosen. The expected trend was also observed in the generated melodies.
Those that used smaller values of the recombination factor had longer segments that
were identical to those occurring in the original melody. This was more rare when
higher values were used. However, as explained before, generation that use higher

7.6. EXPERT EVALUATION 63

0 100 200 300
0

50

100

150

200

250

300

Original Indices

H
om

og
en

eo
us

 T
im

e

r = 0.1

0 100 200 300
0

50

100

150

200

250

300

Original Indices

H
om

og
en

eo
us

 T
im

e

r = 0.5

0 100 200 300
0

50

100

150

200

250

300

Original Indices

H
om

og
en

eo
us

 T
im

e

r = 0.9

Figure 7.5: An example of how change in recombination value affects continuation
index selection in the generation. From left to right, it can be observed that there
is a decreasing tendency for consecutive indices (more jumps).

recombination factor values are susceptible to what sound like “loops”. A “loop”
occurs if, for a certain index there are no options except the direct continuation
(the index that follows it in the original melody) and then at some point there is,
again, only one option back to an index that occurred shortly before (the start of
the loop). A typical loop is shown in the second plot of Figure 7.4. It was found
that, among the chosen examples, values of 0.5 and 0.7 maintained a fairly good
balance between identity and variability. That said, at times, even values as low as
0.3 resulted in nice sounding melodies, but with only very few variations.

7.6 Expert Evaluation

Evaluation of the quality of the generated melodies received from experts through
the questionnaire, while confirming certain claims and expectations about the per-
formance of the system, also revealed some issues and drawbacks in it. Several
responses provided by them were in agreement with one another and helped make
interesting inferences about the system. Some useful suggestions and opinions were
also expressed and will be discussed in this section. In order to understand the
results and their analysis better, Table 7.2 shows the context-length and recombi-
nation factor values used for each of the evaluated generations.

64 CHAPTER 7. DISCUSSION

Song - Artist Context-length Recombination
Track 1 6 0.9
Track 2 32 0.5
Track 3 8 0.7
Track 4 8 0.9
Track 5 8 0.5
Track 6 8 0.9

Table 7.2: List of melodies used for evaluation.

One response that was consistently the same from all the experts for all the
tracks was the observability of patterns in the generations that also occurred in the
original. This is well in accordance with the general claim that Markov chains do
reproduce melodic patterns in a musical context. Moreover, it is also indicative
of the efficacy of the representation in use to capture recurring segments or motifs
from the melody.

But when it came to the occurrence of these patterns in the generations, there
were varying, and sometimes contradicting opinions. It was pointed out that, on cer-
tain occasions in the generated melody, note accents changed. That is, certain notes
which originally occurred on a strong-beat shifted to a weak-beat and vice versa.
This was, in fact, something expected due to the incorrect matches that occurred
in the onset-beat matching stage for symbolizing rhythm (Sections 4.3, 7.3). The
errors that originated during segmentation, thus propagated into the representation
and manifested in this form during generation. However, there were mixed responses
to the resulting effect which were evident from some of the experts’ comments.

“I liked the fact that the “bass player” in the generated melody played
a little longer one note, and changed the accent - the phase of the bass
riff. Jazz music! I liked it!”

-Expert 4 on Melody 3

“The main difference from my point of view is the lack of the rhyth-
mic support, and the shifting of the musical accents. Even more, the un-
derlying harmony of the new melody is not clear, and that’s why there’s
a certain sensation of chaos.”

-Expert 2 on Melody 1

7.6. EXPERT EVALUATION 65

There was a fairly positive feedback in regards to the tempi of the generated
melodies, with two-thirds of all the responses saying that they were the same as
those of their respective originals. It is interesting to see that even in those cases
where the tempo of a generation was considered not to be the same as that of the
original, it was never found to be double or half of it. This observation could possibly
be due to the accent-shifting effect (Section 7.3). This is supported by the fact that
in most of the cases where the tempo of the generation and the original were not
considered to be the same, the experts also pointed out that melodic patterns were
occurring in inappropriate metrical locations (or broken riffs) in the generation.
It may, therefore, have been the case that due to irregularity in reproduction of
certain onsets in their appropriate locations, it was not very straightforward to keep
a track of the tempi in the case of some of the melodies (especially ones without
accompaniment).

The question on overall similarity between the generation and the original re-
ceived a fairly good feedback with all responses being either “Very similar” or
“Somewhat similar”. Although, it must be noted that in certain cases (tracks 2
& 6), the generations were found to be too similar to the original which adversely
affected their interestingness rating. As one of the experts pointed out,

“It is rather uninteresting as it introduces very few new elements.”

-Expert 1 on Melody 6

On revisiting the database and generation parameters, it was found that the
generation for track 2 used a very long context (32 symbols) as a result of which
there were long segments replicated from the original. In the case of track 6, the riff
itself was composed of few notes and with minimal variations. Hence, one may even
consider it to be an encouraging sign that at least a few variations were produced
on this track. Moreover, the riff structure and rhythmic evolution of the generation
in this case are almost identical to those of the original, and when played with the
accompaniment could have created such an impression. It is, however, surprising
that two of the experts considered the riff structure to be occurring inappropriately.
This is yet to be clarified.

When it came to interestingness, from the responses given, it seemed like the
experts found interesting those cases where there were at least some noticeable
variations from the original. There were instances where, although a particular
generation received good feedback for other questions, it received a poor interest-
ingness rating (The rating of Expert 1 for Melodies 2 and 6). It is not very easy
to generalize the basis of these ratings due to their subjectivity, but one can get an

66 CHAPTER 7. DISCUSSION

idea of what was appreciated in the generations from some of the comments by the
experts.

One aspect of the generation of Track 1 that everyone noticed and, in particular,
did not like, was the repetition of the same notes in succession. It should be noted
about this example that a very high recombination factor value was used (0.9). As
a result of this the “loop-effect” that was explained earlier was observed in the form
of repetition of the same note. However, this was quite effectively handled by the
use of a slightly lower value of the recombination factor.

The generation framework used here seems to be more suitable in the case of
short melodic segments rather than long solos. The main problem with longer
melodies is that an overall higher-level structure, which is often ensured by the
musician, is absent. As the temporal scope considered by the system is limited to
around a single measure, it does not make any distinction between notes occurring
at different time locations in the entire melody. Keeping this in mind, a more
suitable application for such a system would be to learn motifs occurring in a longer
melody and reproduce or generate variations of these motifs.

The generation for track 3 received significantly better feedback and ratings than
the others consistently from all the experts. It would help to use this track as a
reference in any future work to assess the relation between the model parameters
and different facets of the melody in order to improve generations related to other
melodies as well.

It was also appreciated that the system was able to reproduce even silent pauses
from the original melody on several occasions. Except melodies 5 & 6, the generation
of every other track had at least three experts give it a rating of 3 or higher.

Overall, the feedback given by the experts, although not extremely positive,
was in fact encouraging. All of them found at least two generations out of the six
genuinely interesting and expressed that with some minor improvements in metrical
analysis, synthesis and overall structure of the generations, the others could also
sound much better. One of them even pointed out that the system does at times
generate interesting variations that were “inspiring”.

“... an interesting evolution of the bass line that could be useful as
an inspiration for musicians.”

-Expert 2 on Melody 2

Chapter 8

Conclusions and Future Work

Feedback received from the experts who evaluated the system’s musical output was
indeed encouraging and indicative that the results were satisfactory. However, there
still remain some issues that need to be addressed. Moreover, the present work laid
the foundation for a system that generates stylistically similar melodies and there
is still room for improvements to enhance its current performance.

8.1 Future Work & Improvements

This work, while mainly focussing on the pitch-based representation for symbolizing
audio data, also proposes exploiting interval and simplified Narmour feature infor-
mation towards the same end. Due to limited time, these representations could only
be implemented, but not explored in depth or evaluated. Given that these differ
significantly from the pitch representation, it is expected that the musical output
using these representations could also be different and worth looking into.

It was also observed during evaluation that there didn’t exist a single value of
context-length that would suit all the examples. However, a possible cue, which
could be explored to automatically estimate its value, is the average tempo of the
melody. A resolution of this issue could also be a task in the future. Another
related issue that came to light in the evaluation was the relative success of riff-
type melody generation over the solo-type. This was mainly due to the lack of
an explicit mechanism to handle higher-level structure of the melody. A possible
extension to this work could be to incorporate methods that segment the melody
into regions based on higher-level similarity that would help reproduce its global

67

68 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

evolution [Moz94], and use what could be short motifs that are generated by the
VLMC locally.

The selection of the number of levels for pitches and meter was handled manually
in this work. A measure of the complexity of the different facets of the melody
could serve as indicators to determine these numbers dynamically depending on the
melody. Additionally, with these improvements, the present approach can also be
extended to melodies of other musical styles played by different instruments.

One of the main reasons why the Turing test could not be applied in the eval-
uation of this work was the fact that there were various synthesis artefacts in the
generated melody. These were also pointed out by some of the experts. Some effort
in this direction to improve the synthesis quality would also be worthwhile.

8.2 Conclusions

This thesis presents a framework to generate guitar and bass melodies that contain
stylistically similar variations of a given original, based on the statistical analysis of
melodic patterns in it. The said variations are produced by the re-shuffling of audio
segments (notes) occurring in the original melody itself, using the variable-length
Markov chain model for learning meaningful arrangements of them. It forms a part
of the broad and fascinating area of stochastic music generation with computers.
This work addresses the much ignored problem of generating stylistically similar
melodies directly from audio, instead of symbolic data (MIDI, MusicXML, etc.).
This is, in general, a more difficult problem due to the occurrence of segmentation
errors that tend to propagate into any symbolic representation that is in use for
generating music. The work also highlights, and to some extent handles, various
issues that arise when dealing with audio data directly. A multi-level representation,
similar in spirit to that of [MP10] is employed here for the symbolic representation
of notes in the melody and their metrical positions. A novel application of the
clustering-level selection method as proposed by [CH74], in the context of pitch
data is also applied towards this end. Although not to completion, the work also
explores the possibility of using the simplified Narmour features and an interval-
contour representation as a replacement for pitch representation. This has been left
out for future experiments. The pitch-based representation produced satisfactory
results which were appreciated by a group of experts who evaluated the musical
output of the system.

Bibliography

[ADD99] Gerard Assayag, Shlomo Dubnov, and Olivier Delerue. Guessing the
Composers Mind: Applying Universal Prediction to Musical Style. In
Proc. International Computer Music Conference, pages 496–499, 1999.

[All02] Moray Allan. Harmonizing chorales in the style of johann sebastian
bach. Master thesis, School of Informatics, University of Edinburgh,
2002.

[Ame87] Charles Ames. Automated Composition in Retrospect: 1956-1986.
Leonardo Music Journal, 20(2):169–185, 1987.

[AW04] Moray Allan and Christopher K. I. Williams. Harmonizing Chorales by
Probabilistic Inference. In Advances in Neural Information Processing
Systems, 2004.

[B7̈8] Alexander Büchner. Mechanical Musical Instruments. London Batch-
worth Press, 1978.

[Ban11] Band-in-a-box, 20th August, 2011. http://www.pgmusic.com/.

[BDA+05] Juan Pablo Bello, Laurent Daudet, Samer Abdallah, Chris Duxbury,
Mike Davies, and Mark B. Sandler. A Tutorial on Onset Detection in
Musical Signals. Speech and Audio Processing, IEEE Transactions on,
13(5):1035–1047, 2005.

[Bil94] J. Biles. Genjam: A genetic algorithm for generating jazz solos. In
International Computer Music Conference, 1994.

[Bro06] Paul Brossier. Automatic Annotation of Musical Audio for Interactive
Applications. PhD thesis, Queen Mary, University of London, 2006.

[BW99] Peter Bühlmann and Abraham J. Wyner. Variable length markov
chains. The Annals of Statistics, 27(2):480–513, 1999.

69

70 BIBLIOGRAPHY

[Can11] Chris Cannam. “Sonic-Annotator”. http://omras2.org/SonicAnnotator,
April 2011.

[CH74] T. Calinski and J. Harabasz. A dendrite method for cluster analysis.
Communcations in Statistics - Theory and Methods, 3:1, 1974.

[Con03] Darrell Conklin. Music Generation from Statistical Models. In AISB
2003 Symposium on Artificial Intelligence and Creativity in the Arts and
Sciences, In Proceedings of, pages 30–35, 2003.

[Cop96] David Cope. Experiments in Musical Intelligence. A-R Editions, Madi-
son, Wisconsin, 1996.

[CW95] Darrell Conklin and Ian H. Witten. Multiple viewpoint systems for
music prediction. Journal of New Music Research, 24(1):51–73, 1995.

[DAC07] Shlomo Dubnov, Gerard Assayag, and Arshia Cont. Audio oracle: A
new algorithm for fast learning of audio structures. In International
Computer Music Conference, pages 224–228, 2007.

[DBDS03] Chris Duxbury, Juan Pablo Bello, Mike Davies, and Mark B. Sandler.
Complex domain Onset Detection for Musical Signals. In 6th Conference
on Digital Audio Effects (DAFx-03), 2003.

[dCK02] Alain de Cheveigne and Hideki Kawahara. Yin, a fundamental frequency
estimator for speech and music. The Journal of the Acoustic Society of
America, 11(4):1917–1930, 2002.

[Dix01] Simon Dixon. Automatic Extraction of Tempo and Beat from Expres-
sive Performances. Journal of New Music Research, 30:39–58, 2001.

[Dix07] Simon Dixon. Evaluation of the audio beat tracking system beatroot.
Journal of New Music Research, 36(1):39–50, 2007.

[FR67] H. P. Friedman and J. Rubin. On some invariant criteria for grouping
data. Journal of the American Statistical Association, 62(320):1159–
1178, Dec 1967.

[Gar70] M. Gardner. Mathematical games: The fantastic combinations of john
conway’s new solitaire game “life”. In Scientific American, volume 223,
pages 120–123. 1970.

[GKM03] Emilia Gómez, Anssi Klapuri, and Benoit Meudic. Melody description
and extraction in the context of music content processing. Journal of
New Music Research, 32, 2003.

BIBLIOGRAPHY 71

[GS97] Charles M. Grinstead and J. Laurie Snell. Introduction to Probability,
chapter 11, pages 405–452. American Mathematical Society, 2 revised
edition edition, 1997.

[GTK10] Jon Gillick, Kevin Tang, and Robert M. Keller. Machine learning of
jazz grammars. Computer Music Journal, 34(3):56–66, 2010.

[Har02] James Harley. The Electroacoustic Music of Iannis Xenakis. Computer
Music Journal, 26(1):33–57, 2002.

[HI59] Lejaren A. Hiller and Leonard M. Isaacson. Experimental Music: Com-
position with an Electronic Computer. McGraw-Hill, 1959.

[Hil70] Lejaren Hiller. Music Composed with Computers: A Historical Survey.
Cornell University Press, 1970.

[Jeh05] Tristan Jehan. Creating Music by Listening. PhD thesis, Massachusetts
Institute of Technology, 2005.

[JMF99] Anil K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A survey.
ACM Computing Surveys, 31(3):264–323, 1999.

[KCGV00] YoungMoo E. Kim, Wei Chai, Ricardo Garcia, and Barry Vercoe. Anal-
ysis of a Contour-Based Representation for Melody. In Proceedings of
International Symposium on Music Information Retrieval, 2000.

[LM94] Michael Z. Land and Peter N. McConnell. Method and apparatus for
dynamically composing music and sound effects using a computer en-
tertainment system, 1994.

[Mar10] M. Marchini. Unsupervised generation of percussion sequences from a
sound example. Master’s thesis, Universitat Pompeu Fabra, 2010.

[MC85] Glenn W. Milligan and Martha C. Cooper. An Examination of Proce-
dures for Determining the Number of Clusters in a Data Set. Psychome-
trika, 50(2):159–179, June 1985.

[Moz94] Michael C. Mozer. Neural network music composition by prediction:
Exploring the benefits of psychoacoustic constraints and multi-scale pro-
cessing. Connection Science, 6(2–3):247–280, 1994.

[MP10] Marco Marchini and Hendrik Purwins. Unsupervised generation of per-
cussion sound sequences from a sound example. In Sound and Music
Computing Conference, 2010.

72 BIBLIOGRAPHY

[Mus11] Rapidcomposer, 20th August, 2011.
http://www.musicdevelopments.com/rapidcomposer.html.

[Pac03] Francois Pachet. The Continuator: Musical Interaction With Style.
Journal of New Music Research, 32(3):333–341, 2003.

[Pai08] Jean-Francois Paiement. Probabilistic Models for Music. PhD thesis,
Ecole Polytechnique Federale de Lausanne, 2008.

[PW01] Marcus Pearce and Geraint Wiggins. Towards a framework for the eval-
uation of machine compositions. In In Proceedings of the AISB01 Sym-
posium on AI and Creativity in Arts and Science. AISB, pages 22–32,
2001.

[Roa96] Curtis Roads. The Computer Music Tutorial, chapter 18, 19, pages
819–909. The MIT Press, 1996.

[RST96] Dana Ron, Yoram Singer, and Naftali Tishby. The power of amnesia:
Learning probabilistic automata with variable memory length. Machine
Learning, 25(2–3):117–149, 1996.

[Rub11] Rubber band library, 20th August, 2011.
http://breakfastquay.com/rubberband/.

[Sch96] E. Glenn Schellenberg. Expectancy in melody: tests of the implication-
realization model. Cognition, 58:75–125, 1996.

[Xen01] Iannis Xenakis. Formalized Music: Thought and Mathematics in Compo-
sition (Harmonologia Series, No 6). Pendragon Pr, 2nd edition, March
2001.

