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1 Section 7.3 supplement

Accurate derivation of a target’s spectrum, and emission
line equivalent widths over the wide MUSE 3D cubes re-
quires the target’s spatial footprint (segmentation map) in
broad-band images and also their broad-band magnitudes.
The UVUDF survey (Rafelski et al. 2015, hereafter R15)
catalog and segmentation map were the primary resource
for this information. However, the wide field of MUSE of-
fers the ability to detect targets based on spectral features
for the first time. Therefore, in parallel to the R15 catalog,
an independent 3D detection procedure was also applied
directly to the MUSE datacube using the ORIGIN software.

[What was the total number of ORIGIN-only detections?
In comparison with the 160 that were not in R15, this would
be interesting completeness study and we might also check
with NoiseChisel generated catalogs.]

The two independent catalogs were then matched [we
need to add the search radius for the matching of ORI-
GIN results with R15 and possibly some other details, if
it wasn’t discussed in the section on ORIGIN.]. However,
160 of the ORIGIN detections did not corresponded to any-
thing in the UVUDF catalog. Therefore, in Section 1.1
the list of objects is classified into various classes and in
Section 1.2 the procedure to derive the segmentation maps
and broad-band magnitudes for this list is discussed. All
the results in this appendix are exactly reproducible and
the reproduction pipeline is released with this paper’.

1.1 Classification

An accurate analysis of the ORIGIN-only objects is neces-
sary to confirm whether the absence of these objects in
the R15 broad-band catalog is an artifact of the detec-
tion methods and configurations used, or it is indeed due
to very weak (possibly non-existant) continuum emission.
Given this independently derived list of objects (from the
fundamentally different MUSE datacubes and different al-
gorithm), this analysis can be very useful in analysing the

L [Similar to Akhlaghi and Ichikawa (2015) where the reproduction
pipeline is uploaded to arXiv along with the final paper’s TEX
sources. arXiv is the most reliable online place to store them with
the paper (the whole pipeline is < 200kB). The pipeline can also
be submitted to the journal.] The version controlled reproduction
pipeline of this appendix is also available at https://gitlab.com/
makhlaghi/muse-not-in-rafelskil5.

causes of success or failure of the detection method used.

The objects can generally be classified into two classes:
1) Those with a footprint in the R15 segmentation map, but
not in the catalog (Figure 1). 2) Those without a footprint
in the R15 segmentation map (Figure 2). The R15 segmen-
tation map and catalog was derived by applying SExtractor
(Bertin and Arnouts 1996) to the average of all optical and
near-infrared images and is a merger of several SExtractor
runs with multiple detection and deblending paramters (see
Table 2 or R15). Since these objects don’t exist in the R15
catalog, a visual analysis was necessary, so 5 cutouts were
made (centered on the object) from the F775W image and
the R15 segmentation map.

To understand the first class, it is important to recall
that given the particular detection algorithm and input pa-
rameters used, non-zero pixels in a segmentation map cor-
respond to the detected pixels. However, partial or full
coverage (non-zero pixels) of the object’s pixels in the seg-
mentation map does not guarantee the object’s existance
in the catalog (as a unique object/row).

Figure 1 shows three categories of the first class of ob-
jects: 1.1) Those due to problems in deblending at a dis-
tance (first row). 1.2) Those due deblending problems of
nearby objects (second row). 1.3) Those that were removed
manually based on S/N and number of detections for high
purity (third row). R15’s primary reason for merging mul-
tiple SExtractor catalogs was to correct for the 1.2 category
debleding problems (second row of Figure 1). However we
see that 26.88% of the ORIGIN-only detections belong to
this class. This failure is caused by a fundamental system-
atic bias in SExtractor’s deblending methodology and has
been thoroughly discussed in Appendix B.2 of Akhlaghi
and Ichikawa (2015, hereafter AI15). The reasons for the
first row of Figure 1 are also described there.

Figure 2 shows the second class of objects, the three
categories for this class are: 2.1) Those that were detected
by NoiseChisel in at least one of the filters (see Section
1.2). 2.2) Those where the diffuse flux was detected in the
F775W filter, but no ‘clump’ could be specified for it. 2.3)
Those that could not be detected by NoiseChisel. From
Figures 1 and 2, it is clear that only 23.12% of the ORI-
GIN detected objects truely had very low continuum sur-
face brightness to be detected as a separate (non-diffuse)
entity. As reviewed above, this shows the methodological
biases against reasonable completeness in R15’s detection


https://gitlab.com/makhlaghi/muse-not-in-rafelski15
https://gitlab.com/makhlaghi/muse-not-in-rafelski15
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Figure 1: First class of ORIGIN detected objects that did not correspond to objects in the R15 catalog, but with footprints in

the R15 segmentation map. The cutouts are 5" wide and centered on the ORIGIN detections. The first column for each object (a.1,
b.1, c.1, d.1, e.1 and f.1) are cutouts from the F775W image. The second column shows the non-zero (corresponding to an object)
pixels in the R15 segmentation maps. The third column shows the NoiseChisel detections in the F775W image in gray and the black
pixels show the final pixels used for this object (see Section 1.2). The first row (a and b) are spatially separated from other objects,
nevertheless they have the same label as the object shown by the red arrow (also see Figure 17 of AI15). The second row (¢ and d)
were too close to a much brighter object and thus not labeled differently. The third row (e and f) are objects with a unique label,
but trimmed from from the R15 catalog for high purity (Section 5 in R15). These three classes constitute approximately 3.12%,

26.88%, and 5.62% of the ORIGIN-only detections respectively.

tools/parameters.

Note that 1 object (MUSE ID 6449) was outside of the
field in the F775W images we were inspecting here for the
classification, so it is not included in any of the percentiles
mentioned above.

1.1.1 Corrections after publication

After the publication of (Bacon et al. 2017) and when prepar-
ing this pipeline for publishing, some very minor differences
were found between this output and what was finally fin-
ished in the paper. As shown below, these differences are
very minor and have no effect on our final result, but since
the aim of this pipeline is ezact reproduction, the differ-
ences must be described.

In the published results, the classification for object
6477 (MUSE ID) was not typed correctly and thus it was
not included in the percentiles. This typo is now corrected.
Finally, the percentiles in the published version were based
on an input list of 173 objects. But that list was later (after
giving the final results of this pipeline, and prior to pub-
lication) corrected to 160. It was my (MA) responsability
to notice the change in the paper, but since it was a small
change in the whole paper, I missed it and thus didn’t up-
date the pipeline’s input or report a change in the output.
Fortunately it only has a small effect on the percentiles.

Therefore, it has no effect on the conclusions drawn from
the percentiles. The input list in the pipeline now is the
final list of 160 objects.

Another minor mistake found in the published paper
is in the third paragraph of Section 7.3, we mentioned
that “We inspect the 88 HST-detected objects discussed
above ...”. However, the number 88 (160 subtracted by the
72 aperture-based detection criteria) was a mistake. The
processing that resulted in 72 objects was done with fixed
apertures for all the objects and it was independent of this
classification. Not noticing the new number 88 in this para-
graph was my (MA) failure. This paragraph in the paper
is about objects that were covered by a SExtractor segmen-
tation map (the first class discussed in Section 1.1 above,
Figure 1). From the percentiles of Figure 1, we see that
this constitues 57 objects. So the first line of this para-
graph must have been “We inspect the 57 ORIGIN-only
objects that were covered by a detection in the Rafelski et
al. (2015) segmentation map ...”. Thefore, the three classes
of Figure 1 constitute 8.77%, 75.44% and 15.79% of the 57%
and these numbers are very close to those mentioned in the
paper (namely 8%, 73% and 15%).

Finally, as noted in Figure 2, following all the correc-
tions above, the value 39% that is discussed in the last
paragraph of this section in the published paper should
have been 40.62%. In the period after reporting these re-
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Figure 2:

Similar to Figure 1, but for objects that were not covered by the R15 segmentation map. The first row (a and b) are

objects that had a NoiseChisel detection. The second row are objects that were within NoiseChisel’s detected regions, but could not
be identified as a clump (their flux is blended too strongly with neighboring objects). The third row are example objects that could
also not be detected by NoiseChisel. These three categories constitute approximately 40.62%, 15.00% and 8.12% of the ORIGIN-only

detections respectively.

sults, I (MA) was heavily involved in the development of
Gnuastro for our next projects with MUSE. Also, the con-
cept behind this reproduction pipeline is also evolving very
rapidly. These might have been partly the cause for these
very minor mis-matches between this pipeline’s results and
those of the paper. In short these were human error and
the future pipelines will be designed to mitigate the sources
of this as much as possible.

1.2 Derivation of segmentation maps and
broad-band magnitudes

The input 0.06” /pixel broad-band images were taken from
the publicly available XDF? (Illingworth et al. 2013, for
the optical and near infra-red images) and UVUDF? (R15,
for the near UV images) surveys. In the IR images, the
public XDF release is a multi-depth image containing the
very deep single WFC3-IR field of view with the rest of the
UDF area covered by shallower images. See Figures 3 and 4
in Illingworth et al. (2013) for the optical and IR exposure
maps over the UDF.

Accurate detection and photometry require an approxi-
mately flat depth/exposure (or noise). Therefore, in the
infrared, the deep and shallow regions were cutout and
the full procedure below was done independently on each

region*. Unfortunately the XDF survey has merged the

2 https://archive.stsci.edu/pub/hlsp/xdf

3 https://archive.stsci.edu/pub/hlsp/uvudf/v2.0

4 The south, east, north and west vertices of the UDF field
are respectively chosen to be at (53.164378, —27.835015),

shallow and deep regions into one image, therefore roughly
1/10th of the UDF area is covered by a very strong expo-
sure/noise gradient. 13.8% of the ORIGIN-only objects lie
on this gradient region. They have been flagged to note
that their infrared magnitude error measurements are un-
reliable. [Discuss how R15 deals with this multi-depth re-
gion.] [Currently the images are not PSF-matched.]

As discussed above, approximately ~ 26.88% of the ob-
jects lie very close to a nearby neighbor along the line of
sight in the R15 segmentation map (second row in Figure
1). With the much lower (sub-Sky) thresholds of Noise-
Chisel, this number greatly increases. For example compare
the gray regions of third column in Figures 1 and 2 with
the black regions of the second columns. Most commonly
these much larger and brighter neighbors are lower redshift
galaxies, with no physical proximity to our desired target.
To avoid the effect of the neighbor’s diffuse and large wings
on the shape and thus measured photometry of these ob-
jects we use NoiseChisel’s “clumps” to identify their pixels
(see Section 3.2.1 of AI15). The boundaries of clumps in
NoiseChisel are defined by the 2D noise fluctuations and

(53.113940, —27.792366), (53.161102, —27.748101), and
(53.211670, —27.789811). This area covers the full R15 seg-
mentation map. The vertices of the deep infrared XDF region
are defined in https://archive.stsci.edu/prepds/xdf and located at
(53.187414, —27.779152), (53.159507, —27.759633), (53.134517,
—27.787144), and (53.190904, —27.778703). The deep/shallow
boundary region with strong gradients is outside the deep
infrared XDF region but inner to these vertices: (53.162129,
—27.810275), (53.130682, —27.787376), (53.158913, —27.756522),
and (53.190904, —27.778703).


https://archive.stsci.edu/pub/hlsp/xdf
https://archive.stsci.edu/pub/hlsp/uvudf/v2.0
https://archive.stsci.edu/prepds/xdf

therefore locate the region were the diffuse neighbor’s wings
start significantly influencing the total pixel flux.

When there is no nearby neighbor, the diffuse flux (that
has been detected) can unambiguously® be used in the ob-
ject’s photometry. To implement this, the following strat-
egy is adopted: when a detection is covered by more than
one clump, the clump’s segmentation map is used. How-
ever, when the detection has only one clump or no clumps
at all (a very diffuse object), we use the full detection’s
segmentation map for that object®. For more on the dis-
tinction between detections and clumps, please see Sections
3.1 and 3.2 of AI157. Finally, since the existance of these
objects is known a-priori (independent of these broad-band
images, in other words, there is no purity problem) we have
set ——detquant=0.90, and --segquant=0.90 to increase
completeness. [Add the NoiseChisel configuration file.]

Figure 3 shows the magnitude difference between R15
and our run of NoiseChisel (with the configuration discussed
above) on the F775W image. In the case of brighter ob-
jects, R15 has measured a brighter magnitude (bottom half
mostly filled) for some objects compared to NoiseChisel.
This confirms the success of the configuration discussed
above: diffuse flux is more common around large/brighter
objects. By ignoring the diffuse flux when there is more
than one clump (to detect and measure the magnitudes of
the first row in Figure 1), we measure a fainter magnitude.
The deblending problems of SExtractor near bright objects
also contributes to this brighter magnitude. For the fainter
objects, it is clear how at fainter limits, we have detected a
brighter magnitude compared to R15. This is due to Noise-
Chisel’s exceptional ability to dig deeply into the noise and
detect the fainter flux. Compare the sizes of the regions
between the second and third columns of Figures 1 and 2.
[Currently the labeled segments in the final segmentation
map are treated as objects (even if they were clumps orig-
inally) so the flux of the river pixels around the clumps is
not subtracted. To be very precise we have to subtract the
river pixel’s flux from the clumps. |

To obtain the magnitudes of the ORIGIN-only (input)
detected objects, NoiseChisel is run with this configuration
on all the filters individually. The resulting catalog is then
matched with the input catalog. Matching is defined as
the nearest object within 0.30” of the input catalog. The
largest segmentation map (from all the filters that have a
match) is used to represent the spatial footprint of each

5 ‘Unambiguous’ is used in reference to the particular image’s depth

and resolution. Much deeper and higher resolution images (for
example by JWST) might reveal substructure.

The following NoiseChisel options were set to achieve this behavior:
——grownclumps, ——gthresh=100000, ——objbordersn—
=1000.

As a review, in the signal-based paradigm (which was exclusively
used in astronomy until now) peaks are first found and used to
estimate/model the fainter parts that are buried in noise. So there
is no distinction between (true) peaks and detections. However,
in the noise-base paradim, a detected region is first found using a
threshold that is far below the Sky value. The detected region is
hence found independently of the brightness structure above the
Sky value. Afterwards, true peaks (“clumps”) are found over the
detected region. Thus a detection region can have no peaks.

Number
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Figure 3: Magnitude difference as a function of magnitude,
for 7583 objects in Rafelski et al. (2015) that are within 0.18"
of our NoiseChisel run’s detections.

input object. If an object could not be matched with a
detection on any of the filters, an aperture with a diameter
of 0.50” is positioned on the given coordinate. This gives
a uniquely labeled region for each ORIGIN-only detected
object which are then merged into one segmentation map.
[Due to the narrower PSF of the ACS filters, ideally the
segmentation map of ACS filters needs to be convolved with
a matching kernel to be used on WFC3 filters.]

The segmentation map is fed into MakeCatalog along
with the input, Sky, and oy, of each filter to generate the
final catalog. [Currently the Sky and ogy, images are taken
from the first run of NoiseChisel on each image. We need
to add an extra run tailored for an accurate Sky and ogyy
measurements.] [Also, the images are not currently PSF-
matched, so the unified segmentation map is not measuring
exactly the same area of the sky. Ideally, we should use one
segmentation map from ACS and WFC3/UV images and
one for WFC3/IR images.]

As lower magnitudes are measured, the observational
scatter caused by the noise can greatly harm the robust-
ness of the result. Therefore when an object’s magnitude
is below a certain limit, the magnitude is replaced with
an upper limit magnitude. Given the different (correlated)
noise properties of each image and very large range of sizes
and shapes that are found or set for the objects, a fixed
value cannot be used as an upper limit magnitude for all the
objects. Therefore we also call MakeCatalog’s ——upper-
limitmag column in this run. When asked for this col-
umn, MakeCatalog will take the object’s segmentation map
and shift it to various random positions over the undetected
areas of the image and will measure the magnitude until 200
magnitudes are measured for that object over the blank ar-



eas of the image. The upper limit magnitude for that object
is then taken as a multiple (3 in this case) times the stan-
dard deviation of this distribution®. When the measured
magnitude of the object is below this limit, this upper limit

magnitude is used instead.
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