
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.3, May 2016

DOI:10.5121/ijfcst.2016.6301 1

A NOVEL APPROACH FOR HOTEL MANAGEMENT

SYSTEM USING CASSANDRA

Hima S
1
, Varalakshmi P

2
and Surekha Mariam Varghese

3

Department of Computer Science and Engineering, M.A. College of Engineering,

Kothamangalam, Kerala, India

ABSTRACT

Apache Cassandra is a distributed storage system for managing very large amounts of structured data.

Cassandra provides highly available service with no single point of failure. Cassandra aims to run on top

of an infrastructure of hundreds of nodes possibly spread across different data centers with small and large

components fail continuously. Cassandra manages the persistent state in the face of the failures which

drives the reliability and scalability of the software systems. Cassandra does not support a full relational

data model because it resembles a database and shares many design and implementation strategies. In this

paper, discuss an implementation of Cassandra as Hotel Management System application. Cassandra

system was designed to run on cheap commodity hardware. Cassandra provides high write throughput and

read efficiency.

KEYWORDS

Cassandra, Data model.

1. INTRODUCTION

Apache Cassandra is an open source, distributed, highly available, decentralized, elastically

scalable, fault-tolerant, consistent, column-oriented database. Cassandra’s distribution design is

based on Amazon’s Dynamo and its data model on Google’s Bigtable. Cassandra was introduced

at Facebook; it is now used at some of the most popular sites on the Web [1].Apache Cassandra is

a type of NoSQL database designed to handle large amounts of data across many servers. This

database provides high availability and no single point of failure.Some of the important points of

Apache Cassandra: (1) It is scalable, consistent and fault-tolerant, (2) It is key-value as well as

column-oriented database,(3) Its data model is based on Google’s Bigtable and distribution

design is based on Amazon’s Dynamo, (4) Introduced at Facebook, it differs sharply from

relational database management systems,(5) Cassandra implements a Dynamo-style replication

model, also adds a more powerful “column family” data model, and (6) Cassandra is being used

by some of the biggest companies such as Facebook, Twitter, Cisco, Rackspace, ebay, Twitter,

Netflix, and more.

Cassandra has become so popular because of its outstanding technical features. Given below are

some of the features of Cassandra:

 Elastic scalability: Cassandra allows adding more hardware to accommodate more

customers and more data as per requirement.

 Always on architecture: Cassandra is continuously available for critical business

applications that cannot afford single point of failure.

 Fast linear-scale performance: Cassandra increases throughput as the number of nodes in

the cluster is increased. Therefore it provides a quick response time.

International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.3, May 2016

2

 Flexible data storage: Cassandra handles all possible data formats including: structured,

semi-structured, and unstructured. It can dynamically provide changes to data structures

according to user need.

 Easy data distribution: Cassandra provides the flexibility to distribute data where user

need by replicating data across multiple data centers.

 Transaction support: Cassandra supports properties like Atomicity, Consistency,

Isolation, and Durability (ACID).

 Fast writes: Cassandra was designed to run on cheap commodity hardware. It performs

fast writes and can store hundreds of terabytes of data, without sacrificing the read

efficiency.

 The rest of this paper is organized as follows. Section 2 discusses NoSQL database.

Section 3 presents the Cassandra Architecture. Section 4 describes the data model of

Cassandra. Section 5 describes the implementation details of Hotel Management System.

The conclusion is given in Section 6.

2. EXISTING RELATIONAL DATABASE

Relational Databases are also popular like NoSQL database. But it has various drawbacks.

Typically address these problems in one or more of the following ways, sometimes in this order:

Throw hardware at the problem by adding more memory, adding faster processors, and upgrading

disks. This is known as vertical scaling.

 When the problems arise again, the answer appears to be similar: now that one box is

maxed out, you add hardware in the form of additional boxes in a database cluster. Now

the problems are data replication and consistency during regular usage and in failover

scenarios.

 Now need to update the configuration of the database management system. This might

mean optimizing the channels the database uses to write to the underlying filesystem.

Then turn off logging or journaling, which frequently is not a desirable (or, depending on

situation, legal) option.

 Having put what attention into the database system, turn to the application. Then try to

improve indexes. Also optimize the queries. But presumably at this scale weren’t wholly

ignorant of index and query optimization, and already had them in pretty good shape. So

this becomes a painful process of picking through the data access code to find any

opportunities for fine tuning. This might include reducing or reorganizing joins, throwing

out resource-intensive features such as XML processing within a stored procedure, and so

forth. Of course, presumably doing that XML processing for a reason, so if it do

somewhere, move the problem to the application layer, hoping to solve it there and

crossing fingers that don’t break something else in the meantime.

 Employ a caching layer. For larger systems, this might include distributed caches such as

memcached, EHCache, Oracle Coherence, or other related products. Now we have a

consistency problem between updates in the cache and updates in the database, which is

exacerbated over a cluster.

 It is possible to duplicate some of the data to make it look more like the queries that

access it. This process, called denormalization, is antithetical to the five normal forms

that characterize the relational model, and violate Codd’s 12 Commandments for

relational data.

International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.3, May 2016

3

Like Cassandra it also supports ACID properties. ACID is an acronym for Atomic, Consistent,

Isolated, Durable, which are the gauges we can use to assess that a transaction has executed

properly and that it was successful:

Atomic

Atomic means “all or nothing”; that is, when a statement is executed, every update within the

transaction must succeed in order to be called and another related update failed. The common

example here is with monetary transfers at an ATM: the transfer requires subtracting money from

one account and adding it to another account. This operation cannot be subdivided; they must

both succeed.

Consistent

Consistent means that data moves from one correct state to another correct state, with no

possibility that readers could view different values that don’t make sense together. For example,

if a transaction attempts to delete a Customer and her Order history, it cannot leave Order rows

that reference the deleted customer’s primary key; this is an inconsistent state that would cause

errors if someone tried to read those Order records.

Isolated

Isolated means that transactions executing concurrently will not become entangled with each

other; they each execute in their own space. That is, if two different transactions attempt to

modify the same data at the same time, then one of them will have to wait for the other to

complete.

Durable

Once a transaction has succeeded, the changes will not be lost. This doesn’t imply another

transaction won’t later modify the same data; it just means that writers can be confident that the

changes are available for the next transaction to work with as necessary.

3. NOSQL DATABASE

A NoSQL database (also called as Not Only SQL) is a database that provides a mechanism to

store and retrieve data other than the tabular relations used in relational databases. These

databases are schema-free, support easy replication, have simple API, eventually consistent, and

can handle huge amounts of data.

The primary objective of a NoSQL database is to have

 simplicity of design,

 horizontal scaling, and

 finer control over availability.

NoSql databases use different data structures compared to relational databases. It makes some

operations faster in NoSQL. The suitability of a given NoSQL database depends on the problem it

must solve.

International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.3, May 2016

4

4. CASSANDRA ARCHITECTURE

The design goal of Cassandra is to handle big data workloads across multiple nodes without any

single point of failure. Cassandra has peer-to-peer distributed system, and data is distributed

among all the nodes in a cluster [2].

 All the nodes in a cluster play the same role. Each node is independent and at the same

time interconnected to other nodes.

 Each node in a cluster can accept read and write requests, regardless of where the data is

actually located in the cluster.

 When a node goes down, read/write requests can be served from other nodes in the

network.

4.1. Data Replication in Cassandra

In Cassandra, one or more of the nodes in a cluster act as replicas for a given piece of data. If it is

detected that some of the nodes responded with an out-of-date value, Cassandra will return the

most recent value to the client. After returning the most recent value, Cassandra performs a read

repair in the background to update the stale values.

The figure 1 shows a schematic view of how Cassandra uses data replication among the nodes in

a cluster to ensure no single point of failure. Cassandra uses the Gossip Protocol to allow the

nodes to communicate with each other and detect any faulty nodes in the cluster.

Figure. 1 Schematic view of Cassandra

International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.3, May 2016

5

4.2. Components of Cassandra

The key components of Cassandra are as follows:

 Node: It is the place where data is stored.

 Data center: It is a collection of related nodes.

 Cluster: A cluster is a component that contains one or more data centers.

 Commit log: The commit log is a crash-recovery mechanism in Cassandra. Every write

operation is written to the commit log.

 Mem-table: A mem-table is a memory-resident data structure. After commit log, the data

will be written to the mem-table. Sometimes, for a single-column family, there will be

multiple mem-tables.

 SSTable: It is a disk file to which the data is flushed from the mem-table when its

contents reach a threshold value.

 Bloom filter: These are quick, nondeterministic, algorithms for testing whether an

element is a member of a set. It is a special kind of cache. Bloom filters are accessed after

every query.

4.3. Cassandra Query Language

Users can access Cassandra through its nodes using Cassandra Query Language (CQL). CQL

treats the database (Keyspace) as a container of tables. Programmers use cqlsh: a prompt to work

with CQL or separate application language drivers.

4.4. Write Operations

Every write activity of nodes is captured by the commit logs written in the nodes. Then the data

will be captured and stored in the mem-table. Whenever the mem-table is full, data will be written

into the SStable data file. All writes are automatically partitioned and replicated throughout the

cluster. Cassandra periodically consolidates the SSTables, deleting unnecessary data.

4.5. Read Operations

During read operations, Cassandra gets values from the mem-table. It checks the bloom filter to

find the appropriate SSTable that holds the required data.

5. DATA MODEL

The data model of Cassandra is significantly different from the normal RDBMS [2].

5.1. Cluster

Cassandra database is distributed over several machines that operate together [3]. The outermost

container is known as the Cluster. For failure handling, every node contains a replica. In case of a

failure, the replica takes charge. Cassandra arranges the nodes in a cluster, in a ring manner, and

assigns data to them.

International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.3, May 2016

6

5.2. Keyspace

Keyspace is the outermost container for data in Cassandra. The basic attributes of a Keyspace in

Cassandra are:

 Replication factor: It is the number of machines in the cluster that will receive copies of

the same data.

 Replica placement strategy: It is the strategy to place replicas in the ring. The different

strategies such as simple strategy (rack-aware strategy), old network topology strategy

(rack-aware strategy), and network topology strategy (data center-shared strategy) are

available.

 Column families: Keyspace is a container for a list of one or more column families. A

column family is a container of a collection of rows. Each row contains ordered columns.

Column families represent the structure of data. Each keyspace has at least one and often

many column families.

6. IMPLEMENTATION DETAILS

The implementation of Apache Cassandra includes installing and configuring Cassandra. Initially

download Cassandra from cassandra.apache.org. Copy the folder named cassandra. Move to bin

folder. Open the Cassandra.yaml file which is available in the bin folder of the Cassandra folder.

Verify that the following configurations.

 data_file_directories “/var/lib/cassandra/data”

 commitlog_directory “/var/lib/cassandra/commitlog”

 saved_caches_directory “/var/lib/cassandra/saved_caches”

Setting the path
Set the path as Cassandra_Home= C:\apache-cassandra-1.2.19

Starting Cassandra
$ cd $CASSANDRA_HOME

$./bin/cassandra –f

Starting cqlsh
Start cqlsh using the command cqlsh as shown below. It gives the Cassandra cqlsh prompt as

output.

$ cqlsh Connected to Test Cluster at 127.0.0.1:9042.

[cqlsh 5.0.1 | Cassandra 2.1.2 | CQL spec 3.2.0 | Native protocol v3]

cqlsh>

An application of Cassandra implementation is Hotel Management System (HMS) [5].Cassandra

database is chosen for this application because of its increasing throughput as the number of

nodes increases, continuous availability for critical business applications and elastic scalability.

Moreover Cassandra handles all possible data formats and distribution of data by replicating data

across multiple data centres. Cassandra supports ACID properties and it works on cheap

commodity hardware.

In the keyspace of Hotel Management System Figure 2 we have the following column families:

Hotel, HotelByCity, Guest, Reservation, PointOfInterest, Room, Room Availability.

In this design, transferred some of the tables, such as Hotel and Guest, to column families. Other

tables, such as PointOfInterest, have been denormalized into a super column family. We have

created an index in the form of the HotelByCity column family.

International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.3, May 2016

7

We have combined room and amenities into a single column family, Room. The columns such as

type and rate will have corresponding values; other columns, such as hot tub, will just use the

presence of the column name itself as the value, and be otherwise empty.

Hotel Management System includes details about different hotels, guests who stay in the hotels,

availability of rooms for each hotel, and a record of the reservation, which is a certain guest in a

certain room for a certain period of time (called the “stay”). Hotels typically also maintain a

collection of “points of interest,” which are shopping galleries, monuments, museums, parks, or

other places near the hotel that guests might like to visit during their stay.

Figure. 2 Hotel Management System

Our application Hotel Management System designed with Cassandra includes the following

characteristics:

 Find hotels in a given area.

 Find information about a specific hotel, such as its name, location, room availability etc.

 Find interesting locations near to a given hotel.

International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.3, May 2016

8

 Find availability of rooms in a given date range.

 Find the amenities and rate for a room.

 Possible to book the selected rooms by entering guest information.

The database in Cassandra is created using keyspace. A keyspace in Cassandra is a namespace

which defines data replication on nodes. A cluster contains one keyspace per node.The

application we’re building will do the following things:

1. Create the database structure.

2. Populate the database with hotel and point of interest data. The hotels are stored in

standard column families, and the points of interest are in super column families.

3. Search for a list of hotels in a given city. This uses a secondary index.

4. Select one of the hotels returned in the search, and then search for a list of points of

interest near the chosen hotel.

5. Booking the hotel by doing an insert into the Reservation column family should be

straightforward at this point, and is left to the reader.

6.1. Table Operations

To create a table use the command CREATE TABLE. The tables required for the Hotel

Management System application can be created using this command. The syntax is

CREATE (TABLE | COLUMNFAMILY) <tablename> ('<column-definition>', '<column-

definition>')

The primary key is represented by a column that is used to uniquely identify a row. Therefore,

defining a primary key is mandatory while creating a table. A primary key is also made of one or

more columns of a table [4].

6.2. CURD Operations

To create data in a table use the command INSERT. The syntax for creating data in a table is

INSERT INTO <tablename> (<column1 name>, <column2 name>....) VALUES (<value1>,

<value2>....)

UPDATE is the command used to update data in a table. The syntax of update is

UPDATE <tablename> SET <column name> = <new value>

<column name> = <value>.... WHERE <condition>

Reading Data using SELECT Clause from a table in Cassandra. Using this clause we can read a

whole table, a single column, or a particular cell. The syntax of SELECT is

SELECT FROM <table name> WHERE <condition>

Delete data from a table using the command DELETE. Its syntax is

DELETE FROM <identifier> WHERE <condition>

6.3. Performance Evaluation

One of the hallmarks of Cassandra is its high performance, for both reads and writes operations.

When new nodes are added to a cluster, Cassandra scales it linearly. The performance of Hotel

Management System application is evaluated with various hardware requirements such as Intel

core CPU @ 1.80 GHz, 64-bit operating system, x64 based processor, 4.00GB RAM. The

software specifications include Apache Cassandra version 1.2.19. Figure 3 gives performance of

Cassandra operations.

In the graph of performance evaluation of Cassandra database X axis represents the throughput in

ops/sec and Y axis represents average latency in ms. Here three operations such as update, insert

and read are evaluated for performance. In the graph it is clear that update operation has very high

International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.3, May 2016

9

throughput while it is in low latency. Similarly insert operation has high throughput [7] while it is

in low latency which is greater than latency of update operation. In the case of read operation

which has low throughput while it is in high latency.

Figure. 3 Performance Evaluation

7. CONCLUSION

NoSQL database: Cassandra is built, implemented, and operated a scalable storage system

providing high performance, and wide applicability. Demonstrated that Cassandra can support a

very high update throughput while delivering low latency. It is very efficient as compared with

other databases.

REFERENCES

[1] http://cassandra.apache.org

[2] http://www.tutorialspoint.com/cassandra/

[3] Dietrich Featherston, Cassandra: Principles and Application, 2010

[4] A. Lakshman, P. Malik, Cassandra - A Decentralized Structured Storage System, Cornell, 2009.

[5] https://www.safaribooksonline.com/library/view/cassandra the definitive/9781449399764/ ch04.html

[6] Robin Hecht Stefan Jablonski, University of Baybreuth " NoSQL Evaluation A Use Case Oriented

Survey" 2011 International Conference on Cloud and Service Computing.

[7]Matthias Nicola and Matthias Jarke. Performance modeling of distributed and replicated databases.

IEEE Trans. on Knowl. and Data Eng.,12(4):645–672, July 2000.

International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.3, May 2016

10

Authors

Hima S. is currently pursuing M.Tech in Computer Science and Engineering in Mar

Athanasius College of Engineering. She completed her B.Tech from Mohandas College of

Engineering and Technology, Thiruvananthapuram. Her areas of research are Image

Processing, Database and Data Mining.

Varalakshmi P. is currently pursuing M.Tech in Computer Science and Engineering in

Mar Athanasius College of Engineering. She completed her B.Tech from P.R.S. College of

Engineering and Technology, Thiruvananthapuram. Her areas of research are Data Mining,

Databases and Image Processing.

Surekha Mariam Varghese is currently heading the Department of Computer Science and

Engineering, M.A. College of Engineering, Kothamangalam, Kerala, India. She received

her B-Tech Degree in Computer Science and Engineering in 1990 from College of

Engineering, Trivandrum affiliated to Kerala University and M-Tech in Computer and

Information Sciences from Cochin University of Science and Technology, Kochi in 1996.

She obtained Ph.D in Computer Security from Cochin University of Science and

Technology, Kochi in 2009. She has around 25 years of teaching and research experience in

various institutions in India. Her research interests include Network Security, Database Management, Data

Structures and Algorithms, Operating Systems and Distributed Computing, Machine learning. She has

published 17 papers in international journals and international conference proceedings. She has been in the

chair for many international conferences and journals.

