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Abstract—We propose a new approach to modeling the behavior of heterogeneous media, according to which
such objects are represented as composed of regions of two types, one being described within the framework
of a discrete, and the other, a continuum approach. This joint approach is promising for the numerical modeling
of complex media with strongly different properties of components. Possibilities of the proposed method were
verified by studying the propagation of elastic waves in a two-component medium with a discrete component,
modeled by the method of movable cellular automata, and a continuum component described by a system of
equations of motion of continuum solved by the finite difference method. The results of calculations show that
this approach provides adequate description of the propagation of elastic waves in complex media and does not
introduce nonphysical distortions at the boundaries where the two models are matched. © 2004 MAIK
“Nauka/Interperiodica”.
Investigation of the laws governing the behavior of
complex media under the action of various external fac-
tors is necessary for solving many basic, technological,
and engineering problems. An important part in such
investigations belongs to methods and approaches
developed by computational mechanics. For a long
time, most numerical methods were based on the
approaches developed within the framework of the
mechanics of continuum. It should be noted that appli-
cation of the methods of continuum mechanics to
description of the process of deformation encounters
considerable difficulties in the presence of local strain-
ing, discontinuities, intense vortex deformations, and
agitation of masses. These problems are especially sig-
nificant in the case of highly porous and heterogeneous
materials and composites with strongly different prop-
erties of components.

Discrete approaches capable of explicitly modeling
the processes involving agitation of masses were devel-
oped predominantly for the investigation of granulated
and friable media [1–4], in which the basic elements
can be modeled by particles. For this reason, most of
these investigations use the equations of motion in the
form typical of the method of particles [4] and the inter-
action forces are calculated within the framework of the
model of hard or soft spheres. However, this formalism
does not provide correct description of the behavior of
continuous isotropic media.

The numerical method of movable cellular automata
(MCA) extensively developed in recent years [5–9] is
free of this disadvantage. While using a discrete
approach, this method is based on the equations of
motion, which are different from classical equations. In
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particular, it was shown [7] that, when the characteristic
automaton size tends to zero, the MCA formalism
allows a transition to the relations of continuum
mechanics. The main advantage of this method is the
possibility of explicitly modeling both the motion of
continuous media and the agitation of masses, includ-
ing the formation of discontinuities of various types
(from the generation of individual defects to the main
crack propagation). This circumstance for the first time
provides prerequisites for jointly using discrete and
continuum approaches within the framework of a com-
mon computational scheme, thus combining the advan-
tages of both approaches for solving problems related
to modeling of complex objects containing explicit
zones of intense straining and fracture.

This paper is devoted to the joint use of discrete and
continuum approaches, which is important for the
development of computational mechanics. The new
approach is based on two methods successfully used in
recent years. The first method, based on the continuum
approach, is the finite difference method of solution of
the dynamical problems of elastoplastic deformation of
continuous media, and the second is the MCA method
based on the discrete description.

Since both methods employed in the proposed
approach are well known [5, 6, 10], we will only con-
sider the questions pertaining to their joint use. The
model medium (Fig. 1) is considered to be composed of
regions of two types—continuous (grid) and discrete
(MCA). Each node of the grid, occurring at the bound-
ary (interface) where the two models are matched, is set
into correspondence with a certain interfacial automa-
ton (element of the MCA model). In the simplest case,
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the automaton size is equal to the grid pitch and there
are no additional automata between the interfacial grid
nodes.

In order to provide for a correct joint description of
consistent behavior of the continuous and discrete
regions, it is necessary to ensure continuity of the state
parameters on the passage across the interface. In this
study, the motion of two models was matched in the
step of calculation of the velocities of interfacial nodes.
For these nodes, the finite difference equation of
motion was written in the form taking into account all
forces acting upon the matched interfacial nodes and
automata.

The five-step computational algorithm is as follows:
1. Calculate the stress-strained state in the continu-

ous region, including the velocities and coordinates of
nodes.

2. Calculate the velocities of interfacial nodes, in
contrast to those of the internal nodes, using the equa-
tions of motion involving forces acting from the dis-
crete region.

3. Call a subroutine realizing the MCA method,
introduce the coordinates and velocities of matched
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Fig. 1. Matching of the continuous and discrete regions of a
model complex medium in the cases when the size of mov-
able cellular automata is (a) smaller than and (b) equal to the
grid pitch: (1) MCA; (2) interface; (3) grid.
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interfacial nodes and automata, and set the integration
step.

4. Perform the MCA integration step (for smaller
automata, several steps) to calculate the new positions
and velocities of all automata, including those matched
with interfacial nodes.

5. Introduce new data on the matched interfacial
automata into the grid model and set a new time step for
the integration.

In order to check for the possibility of jointly using
the discrete and continuum approaches within the
framework of a common computational scheme and
verify the algorithm, we studied the propagation of
elastic waves in a two-component medium with a free
surface, involving only one linear boundary where the
two models have to be matched (Fig. 2). The mechani-
cal characteristics of continuous and discrete media
were taken to be identical, so that the medium was for-
mally homogeneous and the interface should not be
manifested. It should be noted that numerical methods
used in this study were previously successfully applied
to description of dynamical processes, including the
propagation of elastic waves [8, 9, 11–13].

In the first stage, we considered the propagation of a
plane elastic wave with a front parallel to the line of
matching. The results of calculations showed that the
wave crossing the boundary in both possible directions
did not give rise to a reflected wave and the pulse shape
was not distorted. This was evidence that the algorithm
of joint use of the two methods ensured complete
momentum transfer in the absence of shear strain.

In the second stage, we studied a more complicated
problem involving the generation and propagation of
waves of all types in the medium with a free surface.
For this purpose, a region on the surface of an elastic
medium occupying a half-space was subjected to a
short pulse of a local vertical load. The pulse source
was either arranged symmetrically on the line of match-
ing the grid and MCA regions (case 1) or displaced into
one of these regions (case 2). We analyzed the detailed
(‡)
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Fig. 2. Wave field patterns observed when the pulse source is (a) arranged symmetrically relative to the interface (indicated by the
arrow) and (b) shifted toward the discrete region: (1) MCA; (2) grid. See the text for explanation.
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pattern of propagation of waves of all types and the
symmetry of the displacement velocity field. The tests
were performed for both square and close (hexagonal)
packing of automata in the discrete region.

In both cases, the pulsed action resulted in the for-
mation of longitudinal (P) and transverse (S) waves at a
certain distance from the pulse source, which propa-
gated with different velocities (Fig. 2). The presence of
the free surface leads to the formation of so-called con-
ical and surface waves. As can be seen in Fig. 2, the
conical (C) wave is manifested only in the region where
the longitudinal wave interacts with the free surface.
The C-wave front extends from the point where the P
wave emerges on the surface to the tangency point on
the S-wave front. The surface Rayleigh (R) wave prop-
agates at the free surface, lagging slightly behind the S
wave. The R wave has an elliptical polarization and rap-
idly decays with depth.

As is known, the passage of a wave across the inter-
face of two media possessing different mechanical
properties or across the surface of discontinuity of dis-
placements (see, e.g., [13]) gives rise to the formation
of reflected and refracted waves. In all cases under con-
sideration, the results of our calculations showed no
significant distortion of wave fronts (Fig. 2). Nor did
we observe significant secondary (reflected, refracted,
or conical) waves.

Thus, the results of numerical simulation of the
propagation of elastic waves in a combined medium
modeled using the continuum and discrete approaches
confirmed the possibility of jointly using these methods
for description of the elastic behavior of complex
media. Good prospects of the proposed approach and
algorithms of its realization were confirmed by the
results of test calculations, which showed that no artifi-
cial or induced effects arise even in cases of complex,
dynamically developing elastic displacements in a
complex medium with a free surface. The proposed
method can be especially useful for solving problems
involving numerical simulation of the behavior of com-
plex media with strongly different physical properties
of components. Such problems are not only considered
in materials science and machine building but also fre-
T

quently encountered in problems of geomechanics and
the mechanics of soils and rocks.
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