Conference paper Open Access

Towards a Methodology for Creating Time-critical, Cloud-based CUDA Applications

Knight, Louise; Stefani, Polona; Cigale, Matej; Jones, Andrew C.; Taylor, Ian


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.1162877</identifier>
  <creators>
    <creator>
      <creatorName>Knight, Louise</creatorName>
      <givenName>Louise</givenName>
      <familyName>Knight</familyName>
      <affiliation>Cardiff University</affiliation>
    </creator>
    <creator>
      <creatorName>Stefani, Polona</creatorName>
      <givenName>Polona</givenName>
      <familyName>Stefani</familyName>
      <affiliation>Cardiff University</affiliation>
    </creator>
    <creator>
      <creatorName>Cigale, Matej</creatorName>
      <givenName>Matej</givenName>
      <familyName>Cigale</familyName>
      <affiliation>Cardiff University</affiliation>
    </creator>
    <creator>
      <creatorName>Jones, Andrew C.</creatorName>
      <givenName>Andrew C.</givenName>
      <familyName>Jones</familyName>
      <affiliation>Cardiff University</affiliation>
    </creator>
    <creator>
      <creatorName>Taylor, Ian</creatorName>
      <givenName>Ian</givenName>
      <familyName>Taylor</familyName>
      <affiliation>Cardiff University</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Towards a Methodology for Creating Time-critical, Cloud-based CUDA Applications</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>Time-critical applications</subject>
    <subject>distributed cloud computing</subject>
    <subject>CUDA</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-01-18</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="ConferencePaper"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1162877</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1162876</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;CUDA has been used in many different application&lt;/p&gt;

&lt;p&gt;domains, not all of which are specifically image processingrelated.&lt;/p&gt;

&lt;p&gt;There is the opportunity to use multiple and/or distributed&lt;/p&gt;

&lt;p&gt;CUDA resources in cloud facilities such as Amazon&lt;/p&gt;

&lt;p&gt;Web Services (AWS), in order to obtain enhanced processing&lt;/p&gt;

&lt;p&gt;power and to satisfy time-critical requirements which cannot be&lt;/p&gt;

&lt;p&gt;satisfied using a single CUDA resource. In particular, this would&lt;/p&gt;

&lt;p&gt;provide enhanced ability for processing Big Data, especially in&lt;/p&gt;

&lt;p&gt;conjunction with distributed file systems (for example). In this&lt;/p&gt;

&lt;p&gt;paper, we present a survey of time-critical CUDA applications,&lt;/p&gt;

&lt;p&gt;identifying requirements and concepts that they tend to have&lt;/p&gt;

&lt;p&gt;in common. In particular, we investigate the terminology used&lt;/p&gt;

&lt;p&gt;for Quality of Service metrics, and present a taxonomy which&lt;/p&gt;

&lt;p&gt;summarises the underlying concepts and maps these terms to the&lt;/p&gt;

&lt;p&gt;diverse terminology used. We also survey typical requirements&lt;/p&gt;

&lt;p&gt;for developing, deploying and managing such applications. Given&lt;/p&gt;

&lt;p&gt;these requirements, we consider how the SWITCH platform can&lt;/p&gt;

&lt;p&gt;in principle support the entire life-cycle of time-critical CUDA&lt;/p&gt;

&lt;p&gt;application development and cloud deployment, and identify&lt;/p&gt;

&lt;p&gt;specific extensions which would be needed in order fully to&lt;/p&gt;

&lt;p&gt;support this particular class of time-critical cloud applications.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/643963/">643963</awardNumber>
      <awardTitle>Software Workbench for Interactive, Time Critical and Highly self-adaptive cloud applications</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
197
64
views
downloads
All versions This version
Views 197197
Downloads 6464
Data volume 8.0 MB8.0 MB
Unique views 194194
Unique downloads 5252

Share

Cite as