Dataset Open Access
Sara Moccia;
Gabriele Omodeo Vanone;
Elena De Momi;
Leonardo S. Mattos
{ "description": "<p>The <strong>NBI-InfFrames </strong>dataset<strong> </strong>aims to provide the surgical data science community with a labeled dataset for the identification of informative endoscopic video frames. </p>\n\n<p>It is composed of 720 video frames. The frames are manually extracted and labeled from 18 narrow-band laryngoscopic videos of 18 different patients affected by laryngeal spinocellular carcinoma (diagnosed after histopathological examination). </p>\n\n<p>The frames include 180 informative (<strong>I</strong>) video frames, 180 blurred (<strong>B</strong>) frames, 180 frames with saliva or specular reflections (<strong>S</strong>) and 180 underexposed (<strong>U</strong>) frames.</p>\n\n<p>The dataset was created for testing the method proposed in S. Moccia, et al. "<em>Learning-based classification of informative laryngoscopic frames.</em>" COMPUTER METHODS AND PROGRAM IN BIOMEDICINE, (accepted for publication).</p>\n\n<p>The folder<em> <strong>FRAMES.zip</strong> </em>contains 3 subfolders (FOLD1, FOLD2, FOLD3), which are the 3 folds used for cross-validation purpose in the frame classification performance assessment. Data separation in the folds is performed both at image- and patient-level.</p>\n\n<p>Each subfolder contains 4 folders relative to the four frame classes, i.e., <strong>I</strong>, <strong>B</strong>, <strong>S</strong> and <strong>U</strong>.</p>", "license": "https://creativecommons.org/licenses/by-nc/4.0/legalcode", "creator": [ { "affiliation": "Istituto Italiano di Tecnologia / Politecnico di Milano", "@id": "https://orcid.org/0000-0002-4494-8907", "@type": "Person", "name": "Sara Moccia" }, { "affiliation": "Politecnico di Milano", "@type": "Person", "name": "Gabriele Omodeo Vanone" }, { "affiliation": "Politecnico di Milano", "@type": "Person", "name": "Elena De Momi" }, { "affiliation": "Istituto Italiano di Tecnologia", "@type": "Person", "name": "Leonardo S. Mattos" } ], "url": "https://zenodo.org/record/1162784", "datePublished": "2018-01-30", "keywords": [ "Frame selection, NBI endoscopy, machine learning, classification" ], "@context": "https://schema.org/", "distribution": [ { "contentUrl": "https://zenodo.org/api/files/e2ef067f-15d2-4876-bf04-6842bf6c7b8f/FRAMES.zip", "encodingFormat": "zip", "@type": "DataDownload" } ], "identifier": "https://doi.org/10.5281/zenodo.1162784", "@id": "https://doi.org/10.5281/zenodo.1162784", "@type": "Dataset", "name": "NBI-InfFrames" }
All versions | This version | |
---|---|---|
Views | 1,736 | 1,734 |
Downloads | 1,022 | 1,022 |
Data volume | 175.2 GB | 175.2 GB |
Unique views | 1,567 | 1,565 |
Unique downloads | 615 | 615 |