Dataset Open Access

NBI-InfFrames

Sara Moccia; Gabriele Omodeo Vanone; Elena De Momi; Leonardo S. Mattos


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/e2ef067f-15d2-4876-bf04-6842bf6c7b8f/FRAMES.zip"
      }, 
      "checksum": "md5:c624858e2dda6070cf2179ace28d8f10", 
      "bucket": "e2ef067f-15d2-4876-bf04-6842bf6c7b8f", 
      "key": "FRAMES.zip", 
      "type": "zip", 
      "size": 171473464
    }
  ], 
  "owners": [
    36808
  ], 
  "doi": "10.5281/zenodo.1162784", 
  "stats": {
    "version_unique_downloads": 615.0, 
    "unique_views": 1565.0, 
    "views": 1734.0, 
    "version_views": 1736.0, 
    "unique_downloads": 615.0, 
    "version_unique_views": 1567.0, 
    "volume": 175245880208.0, 
    "version_downloads": 1022.0, 
    "downloads": 1022.0, 
    "version_volume": 175245880208.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.1162784", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.1162783", 
    "bucket": "https://zenodo.org/api/files/e2ef067f-15d2-4876-bf04-6842bf6c7b8f", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.1162783.svg", 
    "html": "https://zenodo.org/record/1162784", 
    "latest_html": "https://zenodo.org/record/1162784", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.1162784.svg", 
    "latest": "https://zenodo.org/api/records/1162784"
  }, 
  "conceptdoi": "10.5281/zenodo.1162783", 
  "created": "2018-01-30T16:24:03.829420+00:00", 
  "updated": "2020-01-24T19:25:31.615230+00:00", 
  "conceptrecid": "1162783", 
  "revision": 6, 
  "id": 1162784, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.1162784", 
    "description": "<p>The&nbsp;<strong>NBI-InfFrames </strong>dataset<strong>&nbsp;</strong>aims to provide the surgical data science&nbsp;community with a&nbsp;labeled dataset for the identification of informative endoscopic video&nbsp;frames.&nbsp;</p>\n\n<p>It&nbsp;is&nbsp;composed&nbsp;of 720&nbsp;video frames. The frames are manually&nbsp;extracted and labeled from 18 narrow-band laryngoscopic videos of 18 different patients affected by laryngeal spinocellular carcinoma (diagnosed after histopathological examination).&nbsp;</p>\n\n<p>The frames include 180 informative (<strong>I</strong>) video frames, 180 blurred (<strong>B</strong>)&nbsp;frames, 180 frames with saliva or specular reflections (<strong>S</strong>) and 180 underexposed (<strong>U</strong>) frames.</p>\n\n<p>The dataset was created for testing the method proposed in S. Moccia, et al. &quot;<em>Learning-based classification of informative laryngoscopic frames.</em>&quot; COMPUTER METHODS AND PROGRAM IN BIOMEDICINE, (accepted for publication).</p>\n\n<p>The folder<em>&nbsp;<strong>FRAMES.zip</strong>&nbsp;</em>contains 3 subfolders (FOLD1, FOLD2, FOLD3), which are the 3 folds used for cross-validation purpose in the frame&nbsp;classification performance assessment. Data separation in the folds is performed both at image- and patient-level.</p>\n\n<p>Each subfolder contains 4 folders relative to the four frame classes, i.e., <strong>I</strong>, <strong>B</strong>, <strong>S</strong> and <strong>U</strong>.</p>", 
    "license": {
      "id": "CC-BY-NC-4.0"
    }, 
    "title": "NBI-InfFrames", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "1162783"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "1162784"
          }
        }
      ]
    }, 
    "keywords": [
      "Frame selection, NBI endoscopy, machine learning, classification"
    ], 
    "publication_date": "2018-01-30", 
    "creators": [
      {
        "orcid": "0000-0002-4494-8907", 
        "affiliation": "Istituto Italiano di Tecnologia / Politecnico di Milano", 
        "name": "Sara Moccia"
      }, 
      {
        "affiliation": "Politecnico di Milano", 
        "name": "Gabriele Omodeo Vanone"
      }, 
      {
        "affiliation": "Politecnico di Milano", 
        "name": "Elena De Momi"
      }, 
      {
        "affiliation": "Istituto Italiano di Tecnologia", 
        "name": "Leonardo S. Mattos"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.1162783", 
        "relation": "isVersionOf"
      }
    ]
  }
}
1,736
1,022
views
downloads
All versions This version
Views 1,7361,734
Downloads 1,0221,022
Data volume 175.2 GB175.2 GB
Unique views 1,5671,565
Unique downloads 615615

Share

Cite as