Dataset Open Access
Sara Moccia;
Gabriele Omodeo Vanone;
Elena De Momi;
Leonardo S. Mattos
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.1162784</identifier> <creators> <creator> <creatorName>Sara Moccia</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-4494-8907</nameIdentifier> <affiliation>Istituto Italiano di Tecnologia / Politecnico di Milano</affiliation> </creator> <creator> <creatorName>Gabriele Omodeo Vanone</creatorName> <affiliation>Politecnico di Milano</affiliation> </creator> <creator> <creatorName>Elena De Momi</creatorName> <affiliation>Politecnico di Milano</affiliation> </creator> <creator> <creatorName>Leonardo S. Mattos</creatorName> <affiliation>Istituto Italiano di Tecnologia</affiliation> </creator> </creators> <titles> <title>NBI-InfFrames</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2018</publicationYear> <subjects> <subject>Frame selection, NBI endoscopy, machine learning, classification</subject> </subjects> <dates> <date dateType="Issued">2018-01-30</date> </dates> <resourceType resourceTypeGeneral="Dataset"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1162784</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1162783</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by-nc/4.0/legalcode">Creative Commons Attribution Non Commercial 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>The&nbsp;<strong>NBI-InfFrames </strong>dataset<strong>&nbsp;</strong>aims to provide the surgical data science&nbsp;community with a&nbsp;labeled dataset for the identification of informative endoscopic video&nbsp;frames.&nbsp;</p> <p>It&nbsp;is&nbsp;composed&nbsp;of 720&nbsp;video frames. The frames are manually&nbsp;extracted and labeled from 18 narrow-band laryngoscopic videos of 18 different patients affected by laryngeal spinocellular carcinoma (diagnosed after histopathological examination).&nbsp;</p> <p>The frames include 180 informative (<strong>I</strong>) video frames, 180 blurred (<strong>B</strong>)&nbsp;frames, 180 frames with saliva or specular reflections (<strong>S</strong>) and 180 underexposed (<strong>U</strong>) frames.</p> <p>The dataset was created for testing the method proposed in S. Moccia, et al. &quot;<em>Learning-based classification of informative laryngoscopic frames.</em>&quot; COMPUTER METHODS AND PROGRAM IN BIOMEDICINE, (accepted for publication).</p> <p>The folder<em>&nbsp;<strong>FRAMES.zip</strong>&nbsp;</em>contains 3 subfolders (FOLD1, FOLD2, FOLD3), which are the 3 folds used for cross-validation purpose in the frame&nbsp;classification performance assessment. Data separation in the folds is performed both at image- and patient-level.</p> <p>Each subfolder contains 4 folders relative to the four frame classes, i.e., <strong>I</strong>, <strong>B</strong>, <strong>S</strong> and <strong>U</strong>.</p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 1,736 | 1,734 |
Downloads | 1,022 | 1,022 |
Data volume | 175.2 GB | 175.2 GB |
Unique views | 1,567 | 1,565 |
Unique downloads | 615 | 615 |