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Abstract—In this paper, we perform a system-level feasibility
analysis of full-duplex (FD) relay-aided cellular networks that
are equipped with multiple antennas at the base stations (BSs)
and relay nodes (RNs). The aim is to understand whether FD
relaying is capable of enhancing the rate of cellular networks.
With the aid of tools from stochastic geometry, we develop a
tractable approach for computing the percentile rate, which
allows us to gain insights on the impact of FD relaying for
both cell-edge and cell-median mobile terminals (MTs) subject
to network interference. Contrary to previous works that do
not take into account the network interference, the framework
reveals that even in the absence of self interference at the FD
RNs a network with half-duplex (HD) RNs can outperform its FD
counterpart for a moderate number of antennas at the BSs and
RNs. On the other hand, the FD-based network can substantially
outperform both the HD-based one and the one without RNs for
a sufficiently large number of antennas at the BSs and RNs
and substantially small self-interference power effect at the RNs.
Finally, the aforementioned analytical insights are validated by
means of Monte Carlo simulations.

Index Terms—Full-Duplex Relaying, Cell Association, Network
Interference, Rate, Multiple Antennas.

I. INTRODUCTION

The deployment of relay nodes (RNs) is considered to
be a viable option for improving the coverage and rate of
cellular networks, especially at the cell-edge regions [1–12]
(and references therein). In addition, it has been included
in telecommunication standards, such as the IEEE 802.16j
working group [13, 14] and the Third Generation Partnership
Project’s Long Term Evolution Advanced (3GPP LTE-A)
[15, 16]. Most of the existing works on relaying consider
half-duplex (HD) RNs due to their simplicity [1–8], [13, 15].
However, HD RNs cannot receive and transmit simultaneously
on the same channel, which causes an inefficient use of
resources since different time slots or frequency bands are

Manuscript received July 13, 2016; revised December 19, 2016 ; accepted
February 06, 2017. The work was supported in part by the Generalitat de
Catalunya (2014-SGR-1551) together with the CellFive (TEC2014-60130-P)
and SMART-NRG (MC-IAPP-612294) projects. The work of M. Di Renzo
was supported by the European Commission through the H2020-ETN-5G
Wireless Research Project (Grant 641985). The associate editor coordinating
the review of this paper and approving it for publication was N. Mehta.

K. Ntontin is with the Green, Adaptive, and Intelligent Networking (GAIN)
Group, Department of Informatics and Telecommunications, University of
Athens, Greece (e-mail: konstantinos.ntontin.1983@ieee.org).

M. Di Renzo is with the Laboratoire des Signaux et Systèmes, Cen-
tre National de la Recherche Scientifique, CentraleSupélec, University
Paris Sud, Université Paris-Saclay, 91192 Gif-sur-Yvette, France (e-mail:
marco.direnzo@lss.supelec.fr).

C. Verikoukis is with the SMARTECH Department, Telecommunica-
tions Technological Centre of Catalonia (CTTC/CERCA), Spain (e-mail:
cveri@cttc.es).

required for the reception and transmission phase. Due to this
limitation, during the last years several research works started
to consider the implementation of full-duplex (FD) RNs, which
are capable of receiving and transmitting simultaneously at
the same frequency band [9–12], [14, 16]. This makes such
a technology quite attractive due to the potential increase
in spectral efficiency compared to HD RNs case. However,
the most important challenge that designers of FD systems
face is how to mitigate or even eliminate the strong self
interference at the FD nodes, which is the result of the
simultaneous reception and transmission at the same frequency
band. Without counteracting this interference, the performance
of FD-based networks in terms of error rate and throughput
can be worse compared to their HD counterparts [17, 18].
Some indicative ways to mitigate/eliminate such interference
are isolation and signal processing techniques, such as using
multiple antennas in the latter case [19–21].

The above works show that relaying can be beneficial
regarding coverage and rate improvement with respect to the
no-RNs case. They consider, however, scenarios that may not
apply in practice, such as that base stations (BSs) and RNs are
located at fixed positions and that the other-cell interference
is Gaussian distributed. These assumptions do not come in
agreement with the expected heterogeneous nature of next
generation cellular systems in which the number and the
position of these nodes are not known a priori [22]. In addition,
the aforementioned literature works study isolated point-to-
point systems and, hence, such studies cannot give general
insights about the usefulness of RNs in a general cellular
system. However, a system-level analysis that considers the
whole network and not a point-to-point system is essential
since FD RNs are subject to higher interference compared
to their HD counterparts. This is due to the fact that more
nodes transmit at any time instant than the latter case [23].
Consequently, apart from the self interference, the higher
network interference that FD RNs are subject to needs also
to be counteracted.

In the literature, there have been several works that study the
performance of cellular networks from a system-level perspec-
tive, but without considering RNs. In particular, for analyti-
cal tractability these works consider the so-called stochastic-
geometry abstraction modeling in which nodes, such as BSs
and mobile terminals (MTs), are modeled as points of a
Poisson-point process (PPP) with a particular intensity [24],
[25]. Such an approach has been applied to different scenarios
of interest, such as the modeling and analysis of downlink
[24], multi-antenna [26, 27], heterogeneous [28–30], uplink
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[31, 32], millimeter-wave [33–35], and FD cellular networks
[36, 37], to give some indicative examples.

Against this background and to the best of the authors’
knowledge, [38] is the first work that studies relay-aided cellu-
lar networks by considering a stochastic-geometry abstraction
modeling, where the BSs, RNs, and MTs are modeled as
three independent and homogeneous PPPs. By considering
decode-and-forward (DF) [39] and HD-based RNs, the main
outcomes of [38] are that coverage and rate highly depend on
the path-loss exponents of the one- and two-hop links and
that parameter optimization is needed to achieve gains by
using RNs in certain scenarios. Specifically, coverage gains
with respect to the no-RNs case are observed, whereas no rate
increase is feasible due to the HD constraint of the RNs. Apart
from not considering FD RNs, [38] considers only single-
antenna nodes. Finally, the system model of [38] is extended
in [40] by considering multiple-antenna BSs and HD RNs. The
outcome of [40] is that even with a substantially large number
of antennas the network with HD RNs cannot outperform
in terms of rate its counterpart without RNs due to the HD
constraint.

Contribution: Motivated by the lack of a system-level anal-
ysis regarding the potential of FD RNs in a cellular system,
in this work we consider a stochastic geometry-based network
of multiple-antenna BSs and FD RNs in the downlink, which
can beamform their signal towards their intended receiver.
The consideration of multiple antennas at these nodes is
initiated by the fact that a high number of antennas is essential
towards mitigating/eliminating both the self interference and
the higher network interference that the FD nodes are subject
to compared to their HD counterparts. This is due to the effect
of multi-antenna transmission with a high number of antennas
[41]. For the special case of a single receive antenna at the
RNs, we derive an analytical expression of the xth percentile
rate, which exhibits a good match with respect to Monte
Carlo simulations. In addition, it enables the following insights
regarding the comparison with a network with HD RNs:

• In the interference-limited region, the coverage probabil-
ity of the FD network is smaller than the corresponding
one of its HD counterpart even in the absence of the self
interference at the RNs. However, the xth percentile rate
of the former network, which depends on the coverage
probability, can be either smaller or larger than the latter
one depending on the path-loss exponent values and
the available number of antennas. Such an outcome is
in contrast to previous works that do not consider the
impact of network interference and show that FD RNs
outperform the HD ones in terms of rate when there is
no self interference or its power effect at the RNs is small
[18, 42].

• As the number of antennas at the BSs and RNs increases,
the effect of network interference and self interference
is mitigated. This means that there is a crossing point
regarding the available number of antennas above which
the FD network outperforms the HD one in terms of rate.

The above insights are validated by means of Monte Carlo
simulations. These simulations also show that: 1) Higher

average rates are achieved for the cell-edge and cell-median
users of the network with FD RNs compared to its HD
counterpart and the baseline network without RNs, provided
that: i) The BSs and RNs are equipped with a sufficiently large
number of antennas and ii) The self-interference power level
at the RNs is adequately small. 2) No-rate gains are achieved
by the HD-based network over the one without RNs due to
the HD constraint.

Organization: The rest of this paper is organized as follows:
In Section II, the system model is presented. Section III
introduces the signal model and the xth percentile rate as the
performance metric of interest. In Section IV, we derive an
analytical expression of the xth percentile rate, whereas in
Section V we derive the corresponding analytical expression
for the HD case, which is based on the same analysis, and
we compare with the FD one. In Section VI, we provide a
discussion regarding the applicability and limitations of the
derived expressions. The analytical results are validated in
Section VII by means of Monte Carlo simulations. Finally,
Section VIII concludes this work.

II. SYSTEM MODEL

A. Scenario

We consider a downlink relay-aided cellular network, where
the BSs, RNs, and MTs are modeled as points of three
independent and homogeneous PPPs, which are denoted by
ΦBS, ΦRN, and ΦMT with densities λBS, λRN, and λMT,
respectively. BSs are equipped with NBS antennas, RNs use
NRx
RN for reception, NTx

RN antennas for transmission1, and
operate in FD mode and, finally, MTs are single-antenna
nodes. The BSs and RNs have δ ≥ 1 frequency bands at
their disposal, which serve the MTs. In addition, we assume
that the BSs and RNs have perfect instantaneous channel state
information (CSI) regarding their intended RNs and MTs2.
Furthermore, the RNs have perfect CSI of the channel links
from their associated BSs and can have perfect, imperfect,
or even no knowledge of the self-interference channel coeffi-
cients. Moreover, we assume that the BSs pick randomly with
probability 1/δ the frequency band to transmit to a particular
MT. In addition, the RNs transmit at the same frequency band
with the BSs they are paired with. Finally, in this work we do
not consider pilot contamination [41] due to space limitations
and the fact that it can be totally eliminated by proper signal-
processing techniques [43].

Moreover, we denote a particular target MT by MT0, which
can be served via a one or a two-hop transmission. In the
former case, the serving BS is denoted by BS0, whereas in
the latter one the RN that serves MT0 is denoted by RN0

and the BS that serves RN0 is denoted by BSR0. Without
loss of generality and based on the Slivnyak theorem [44, vol.
1, Th. 1.4.5], in this work we study the performance metrics
of a MT0 located at the origin of the bi-dimensional plane.

1We assume that the RNs have separate receiving and transmitting units in
order to make our model more generic by considering cases with NTx

RN 6=
NRx
RN . However, our analysis also applies to a shared antenna implementation

by using a circulator [12].
2Such CSI at the BSs and RNs can be obtained from the uplink channels

in a time-division duplexing network.
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Finally, we note that the analysis is performed for an arbitrary
frequency band and the set of interfering BSs and RNs at
the frequency band of interest are denoted by Φ

(I)
BS and Φ

(I)
RN,

respectively. The cell-association criterion regarding whether
the communication between a BS and a MT is performed in
one or two hops (through the use of a RN) is introduced in
Section II-D.

B. FD Relaying Principle

When the communication is assisted by a RN, it takes place
in two time slots in which both the BSs and RNs are allowed
to transmit. In particular, at time slot n BSR0 conveys to RN0

the symbol sn, whereas at the same time slot RN0 conveys to
MT0 the symbol s

′

n−1. The latter is the detected symbol of
sn−1 that BSR0 conveyed to RN0 at time slot n−1. Hence, the
received version of sn at RN0 is subject to self interference
due to the transmission of the symbol s

′

n−1 from RN0. In
addition, the received version of s

′

n−1 at MT0 is subject to
interference from BSR0 due to the transmission of sn.

In the same way, at time slot n+ 1 BSR0 conveys to RN0

the symbol sn+1, which is subject to self interference due to
the transmission from RN0 at the same slot of the symbol s

′

n,
which is the detected symbol at RN0 of time slot n. Moreover,
the received version of s

′

n at MT0 is subject to interference
from BSR0 due to the transmission of sn+1. This way, as n→
∞ the symbol rate of the FD operation asymptotically tends to
1 symbol/slot, which is the same as the direct-communication
rate without RNs.

C. Channel Modeling

1) Path-Loss Model: Let rXi,Yk be the distance between the
nodes Xi and Yk with path loss l (rXi,Yk) = κ0r

βX,Y
Xi,Yk

, where
κ0 denotes the free-space path loss at a distance of one meter
and βX,Y > 2 denotes the path-loss exponent. Specifically,
κ0 = (4π/v)

2, where v is the transmission wavelength.
2) Shadowing Model: Besides the distance-dependent path

loss, we further assume that the link between the nodes Xi and
Yk is subject to shadow fading, which follows a log-normal
distribution [45], whose probability density function (pdf) is

fSXi,Yk (ξ) =
[
10 log10 (e)

/(√
2πσ2

X,Y ξ
)]

× exp
(
−(10 log10 (ξ)− µX,Y )2/(2σ2

X,Y

))
, (1)

where µX,Y and σ2
X,Y denote the mean and the variance

of the random variable 10 log10 (SXi,Yk). For mathematical
tractability, the expected spatial correlation of shadowing is
not considered in this paper.

3) Fast-Fading: Besides path-loss and shadowing, the links
between any of the antennas of the Xi and Yk nodes are subject
to a random complex channel gain related to fast fading, which
is denoted by hXi,Yk . The power gain |hXi,Yk |

2 is assumed
to follow an exponential distribution (i.e., Rayleigh fading is
considered) having mean square value equal to 1. Hence, the
pdf of |hXi,Yk |

2 is f|hXi,Yk |
2 (ξ) = exp (−ξ).

4) Description of the Self Interference at RN0: The self-
interfering signal at RN0 consists of two parts [12]: i) The
direct-path self interference propagating directly from the

transmit to the receive chain. It can either comprise the
signal propagating directly from the transmit to the receive
antennas in a separate antenna structure or the signal reaching
the receive chain due to circulator leakage (due to antenna
mismatching, for instance) in a shared antenna structure. The
power effect of this component can be much larger than the
power of the received signal, which can render FD-relaying
operations useless [11]. Hence, it is essential that such a
component is substantially suppressed so that it is negligible
compared to the noise level. This can be realized by the use
of highly directional antennas or significant isolation between
the transmit and receive antennas of RN0 and cancellation
techniques [12]. In fact, such an important suppression can be
achieved without resorting to bulky components and antenna
structures [46]. Due to this, in this work we assume that the
power effect of the direct path of the self-interfering signal
is negligible compared to the noise level. ii) A multipath
part due to scattering and reflections from objects in the
radio path. We assume that this fast-fading coefficient for
each transmit-receive antenna pair of RN0 is described by a
zero-mean complex Gaussian random variable with variance
σ2

SI, which depends on the distance-based path loss and the
shadowing effects that the scattering components experience
before reaching the receive antennas of RN0. We denote such
a matrix by HSI ∈ CNN

Rx
RN×N

Tx
RN . In addition, we assume that

RN0 can have perfect, imperfect, or even no knowledge of
the self-interference channel matrix, as we aforementioned in
Section II-A3.

D. Cell Association and Interfering Processes
1) Cell Association: Let PT be the total transmit power

budget for serving MT0. Let PBS0
, PRN0

, and PBSR0
denote

the transmit powers of BS0, RN0, and BSR0, respectively. In
order to ensure the total power constraint [39] as our design
aim, they are defined by PBS0 = PT , PRN0 = (1−KT )PT ,
and PBSR0

= KTPT , where 0 < KT < 1 is a power-splitting
coefficient.

The triplet BS0, RN0, and BSR0 is identified by using the
following cell-association criteria:

BS0 = arg min
BSi∈ΦBS

{
l (rBSi,MT0)

PTSBSi,MT0

}
RN0 = arg min

RNk∈ΦRN

{
l (rRNk,MT0)

(1−KT )PTSRNk,MT0

}
BSR0 = arg min

BSi∈ΦBS

{
l (rBSi,RN0)

KTPTSBSi,RN0

}
.

(2)

The association criteria in (2) ensure that MT0 receives the
highest power from the available BSs and RNs in the case
that it is associated with a BS and RN, respectively, as well
as that the serving RN, RN0, receives the highest power from
the available BSs.

Let the triplet of network elements BS0, RN0, and BSR0
from (2). The typical MT, MT0, is served either via a one-

3In the case of perfect CSI, RN0 can eliminate the self-interference signal
with proper precoding vectors as in [19] and, hence, σ2

SI = 0. In the case of
imperfect CSI, we assume that the residual interference that remains after the
cancellation method follows a distribution with variance σ2

SI.
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or a two-hop link according to the cell-association criterion as
follows:{

One hop, if
l(rBS0,MT0)

BBSPT SBS0,MT0
≤ l(rRN0,MT0)
BRN(1−KT )PT SRN0,MT0

Two hops, otherwise,
(3)

where BBS and BRN are non-negative constants and BS0,
RN0, BSR0 are obtained from (2). BBS and BRN are called
bias coefficients and depending on their value they prioritize
either the single-hop or the two-hop transmission conditioned
on the values of the path-loss exponents. Without loss of gen-
erality, we assume that BRN = 1 and BBS ≥ 0. In particular,
the communication takes place in one hop if BBS = ∞ and
in two hops if BBS = 0.

2) Interfering Processes: As far as Φ
(I)
BS is concerned, it

can be split into two disjoint sets, Φ
(I,1hop)
BS and Φ

(I,2hop)
BS ,

corresponding to the interfering BSs serving their associated
MTs either via a one- and two-hop link, respectively. Since
the cell association in (2), (3) is distance-dependent, the
sets Φ

(I,1hop)
BS and Φ

(I,2hop)
BS are not homogeneous PPPs. For

mathematical tractability though, we assume that these sets are
homogeneous PPPs with densities λ(I,1hop)BS = χ1hopλ

(I)
BS and

λ
(I,2hop)
BS = χ2hopλ

(I)
BS, respectively, where χ1hop and χ2hop

are the probabilities that MT0 is served via a one- and a two-
hop link, respectively. Hence, χ1hop +χ2hop = 1. The process
for deriving χ1hop and χ2hop is introduced in Section IV-A.

In addition, it holds that the number of the interfering RNs
is equal to the number of the interfering BSs participating in
the two-hop transmissions due to the fact that paired BSs and
RNs transmit at the same frequency band. As with Φ

(I,1hop)
BS

and Φ
(I,2hop)
BS , the set of interfering RNs, which we denote by

Φ
(I)
RN, is not a homogeneous PPP. However, for mathematical

tractability we assume that it is homogeneous with density
λ
(I)
RN = χ2hopλ

(I)
BS. The cell association and interfering nodes

in the single- and two-hop cases are depicted in Fig. 1.

E. Frequency Band Allocation
We consider that each MT is served by one frequency band,

which is chosen randomly with probability 1/δ. By assuming
that λMT = kMTλBS, it holds that the set of the interfering
BSs, which we denote by Φ

(I)
BS, is a homogeneous PPP of

density equal to λ(I)BS = (kMT/δ)λBS if kMT � δ, due to the
thinning property of a PPP [44] and equal to λBS if kMT � δ.
The latter case holds under the assumption that if δ is smaller
than the number of MTs in a cell, only δ MTs are scheduled
for downlink transmission and the rest are scheduled at a
future period. In such a case, there are different scheduling
algorithms to select the MTs to be scheduled, which is out of
the scope of this work. In this work, we assume that the MTs
are scheduled randomly. The analysis in this work is also valid
for general load conditions, such as the case when kMT and
δ are comparable. However, the cell-size distribution needs to
be known in order to derive the density of the interfering BSs
[38], which can be empirically derived from simulations [47].

Notation: The following notation is used throughout this
paper: i) skn is the transmitted data symbol at time slot n
of node k. ii) ZX,Y = l (rX,Y )/SX,Y for X ∈ {BS,RN}

0MT

0BS

Interfering BSs of

Interfering RNs

0 0BS ,MTr

Interfering BSs of
 I,1hop

BSΦ

 I,2hop

BSΦ

(a) Single-hop communication.

0MT

0RN

R0BS

0 0BS ,MTr

0 0BS ,RNr

Interfering BSs of

Interfering RNs

Interfering BSs of
 I,1hop

BSΦ

 I,2hop

BSΦ

(b) Two-hop communication.

Fig. 1: Cell association and interfering nodes in the single- and two-
hop cases.

and Y ∈ {RN,MT} denotes the ratio of path-loss and
shadowing for a generic (X,Y ) link. iii) σ2

N = 10σ
2
N (dBm)/10

denotes the thermal noise power, where σ2
N (dBm) = −174+

10 log10 (BW) + FdB, FdB is the noise figure in dB, and
BW is the transmission bandwidth of each frequency band.
iv) ηcell = (BBSPT )/(BRN (1−KT )PT ) is a shorthand used
for simplifying the writing of (3). v) Recurrent parameters and
symbols are included in Table I.

TABLE I: RECURRENT PARAMETERS AND SYMBOLS

Symbol Meaning

ΦX PPP of network elements X = {BS,RN,MT}
Φ

(I)
X PPP of interfering network elements X = {BS,RN}
λX density of network elements X = {BS,RN,MT}
δ number of frequency bands

BS0, BSR0 One- and two-hop serving BSs, respectively
RN0 serving RN of two-hop transmission
MT0 reference MT
βX,Y path-loss exponent of the X-to-Y link
SX,Y shadowing of the X-to-Y link
hX,Y fast-fading coefficient of the X-to-Y link
PT total transmit power
PX transmit power of network element X

KT power-splitting ratio
BBS, BRN bias coefficients
χ1hop, χ2hop one- and two-hop transmission probabilities

σ2
N thermal noise power

BW transmission bandwidth per frequency band
ηcell a shorthand
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III. SIGNAL MODEL AND EXAMINED METRIC

In this section, expressions of the instantaneous signal-
to-interference-plus-noise ratio (SINR) are derived and the
performance metric under consideration is presented, which
depends on the SINR statistics.

A. Signal Model

1) Single-Hop Transmission: In the case of a single-hop
transmission between MT0 and the selected BS, BS0, the
received signal at MT0, which is denoted by y

(1)
MT0

, is given
by

y
(1)
MT0

=
√

(PT /NBS)Z−1
BS0,MT0

hBS0,MT0wBS0,MT0s0n

+ i
(1)
BS,MT0

+ i
(2)
BS,MT0

+ i
(1)
RN,MT0

+ n
(1)
MT0

, (4)

where hBS0,MT0 ∈ CN1×NBS , wBS0,MT0
∈ CNBS×1 is the em-

ployed beamforming vector at BS0, and E
{
n
(1)
MT0

n
(1)∗
MT0

}
=

σ2
N . In addition, i(1)BS,MT0

, i(2)BS,MT0
are the interference pro-

cesses affecting MT0, which result from the set of BSs con-
stituting the single- and two-hop transmissions, respectively.
They are given by

i
(1)
BS,MT0

=
∑

BSi∈Φ
(I,1hop)
BS

√
(PT /NBS)Z−1

BSi ,MT0
hBSi ,MT0wBSi ,MTi

× sin1 (ZBSi,MT0 > ZBS0 ,MT0 )

i
(2)
BS,MT0

=
∑

BSj∈Φ
(I,2hop)
BS

√
KT (PT /NBS)Z−1

BSj ,MT0
hBSj ,MT0w

Tx
BSj ,RNj

× sjn1
(
ZBSj,MT0 > ZBS0 ,MT0

)
,

where wBSi,MTi , w
Tx
BSj,RNj

are the beamforming vectors related
to BSi and BSj, respectively. The indicator functions in (5),
1 (ZBSi,MT0

> ZBS0,MT0
) and 1

(
ZBSj ,MT0

> ZBS0,MT0

)
for BSi ∈ Φ

(I,1hop)
BS and BSj ∈ Φ

(I,2hop)
BS , respectively, origi-

nate from the association criterion in (2). i(1)RN,MT0
is the inter-

ference process originating from the interfering RNs towards
MT0, which is given by

i
(1)
RN,MT0

=
∑

RNk∈Φ
(I)
RN

card
{

Φ
(I)
RN

}
=card

{
Φ

(I,2hop)
BS

}
√

(1−KT ) (PT /NRS)Z−1
RNk,MT0

hRNk,MT0

×wRNk,MTks
′
kn−1

1 (ηcellZRNk,MT0 > ZBS0,MT0) ,

where the indicator function in (5) originates from (3).
Since the serving BSs have perfect CSI of the corresponding

channel links towards their served MTs or RNs, we assume
that the employed beamforming vectors are designed so
that they maximize the received signal-to-noise Ratio (SNR).
Hence, maximum ratio transmission (MRT) [48] is employed,

which means that wBS0,MT0 =
hHBS0,MT0

‖hBS0,MT0‖
. Consequently, the

resulting from (4) SINR at MT0, which is denoted by
SINRBS0,MT0 , is given by

SINRBS0 ,MT0 =
(PT /NBS) ‖hBS0 ,MT0‖

2 Z−1
BS0 ,MT0

σ2
N + I

(1)
BS,MT0

+ I
(2)
BS,MT0

+ I
(1)
RN,MT0

, (5)

where

I
(1)
BS,MT0

=
∑

BSi∈Φ
(I,1hop)
BS

(PT /NBS)Z−1
BSi ,MT0

|hBSi ,MT0wBSi ,MTi |
2

1 (ZBSi,MT0 > ZBS0 ,MT0 )

I
(2)
BS,MT0

=
∑

BSj∈Φ
(I,2hop)
BS

KT (PT /NBS)Z−1
BSj ,MT0

∣∣∣hBSj ,MT0w
Tx
BSj ,RNj

∣∣∣2
1
(
ZBSj,MT0 > ZBS0 ,MT0

)
and

I
(1)
RN,MT0

=
∑

RNk∈Φ
(I)
RN

card
{

Φ
(I)
RN

}
=card

{
Φ

(I,2hop)
BS

}
(1−KT ) (PT /NRS)Z−1

RNk,MT0

× |hRNk,MT0wRNk,MT0 |
2 1 (ηcellZRNk,MT0>ZBS0,MT0) ,

2) Two-Hop Transmission: In the case that the communi-
cation takes place in two hops, RN0 and BSR0 are defined in
(2). In the following, we describe the signal model for each
of the two hops.

a) First Hop: Communication between BSR0 and RN0:
The received signal at RN0 from BSR0, which we denote by
yRN0

, is given by

yRN0 =

√
KTPT

NBSZBSR0RN0

wRx
BSR0RN0

HBSR0RN0 ×wTx
BSR0RN0

s0n

+
√

(1−KT ) (PT /NRS)wRx
BSR0RN0

HSIwRN0,MT0
s
′
0n−1

+ i
(1)
BS,RN0

+ i
(2)
BS,RN0

+ iRN,RN0
+ nRN0 , (6)

where HBSR0,RN0 ∈ CNN
Rx
RN×NBS , wTx

BSR0RN0
∈ CNBS×1 and

wRx
BSR0RN0

∈ C1×NRxRN are the employed beamforming vectors
at BSR0 and RN0, respectively, wRN0,MT0

∈ CNTxRN×1 is the
employed beamforming vector at RN0, E

{
nRN0n

∗
RN0

}
=

σ2
N , and i

(1)
BS,RN0

, i
(2)
BS,RN0

are the interference processes
affecting RN0, which result from the BSs constituting the
single- and two-hop transmissions, respectively, and given by

i
(1)
BS,RN0

=
∑

BSi∈Φ
(I,1hop)
BS

√
(PT /NBS)Z−1

BSi ,RN0
wRx

BSR0RN0
HBSi ,RN0wBSi ,MTisin

1 (ZBSi,RN0 > ZBSR0 ,RN0 )1 (ZBSi,MT0 > ηcellZRN0 ,MT0 )

i
(2)
BS,RN0

=
∑

BSj∈Φ
(I,2hop)
BS

√
KT (PT /NBS)Z−1

BSj ,RN0
wRx

BSR0RN0
HBSj ,MT0w

Tx
BSj ,RNj

× sjn1
(
ZBSj,RN0 > ZBSR0 ,RN0

)
1
(
ZBSj,MT0 > ηcellZRN0 ,MT0

)
,

and iRN,RN0
is the interference process affecting RN0, which

is caused by the set of interfering RNs. It is given by

iRN,RN0 =
∑

RNk∈Φ
(I)
RN

card
{

Φ
(I)
RN

}
=card

{
Φ

(I,2hop)
BS

}
√

(1−KT ) (PT /NRS)Z−1
RNk,RN0

wRx
BSR0RN0

×HRNk,RN0wRNk,MTks
′
kn−1

1 (ZRNk,MT0 > ZRN0,MT0)

.

Hence, the resulting from (6) SINR at RN0, denoted by
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SINRBSR0 ,RN0 =
KT (PT /NBS)

∣∣wRx
BSR0RN0

HBSR0,RN0w
Tx
BSR0,RN0

∣∣2 Z−1
BSR0 ,RN0

σ2
N + (1−KT ) (PT /NRS)

∣∣∣wRx
BSR0,RN0

HSIwRN0,MT0

∣∣∣2 + I
(1)
BS,RN0

+ I
(2)
BS,RN0

+ IRN,RN0

(7)

SINRRN0 ,MT0 =
(1−KT )

(
PT /N

Tx
RN

)
|hRN0,MT0wRN0,MT0 |

2 Z−1
RN0 ,MT0

σ2
N +KT (PT /NBS)Z−1

BSR0,MT0

∣∣∣hBSR0,MT0w
Tx
BSR0,RN0

∣∣∣2 + Ĩ
(1)
BS,MT0

+ Ĩ
(2)
BS,MT0

+ I
(2)
RN,MT0

, (8)

SINRBSR0,RN0 , is given by (7) at the top of the next page, where

I
(1)
BS,RN0

=
∑

BSi∈Φ
(I,1hop)
BS

(PT /NBS)Z−1
BSi ,RN0

∣∣∣wRx
BSR0RN0

HBSi ,RN0wBSi ,MTi

∣∣∣2
1 (ZBSi,RN0 > ZBSR0 ,RN0 )1 (ZBSi,MT0 > ηcellZRN0 ,MT0 )

I
(2)
BS,RN0

=
∑

BSj∈Φ
(I,2hop)
BS

KT (PT /NBS)Z−1
BSj ,RN0

∣∣∣wRx
BSR0RN0

HBSj ,MT0w
Tx
BSj ,RNj

∣∣∣2
1
(
ZBSj,RN0 > ZBSR0 ,RN0

)
1
(
ZBSj,MT0 > ηcellZRN0 ,MT0

)
and

IRN,RN0 =
∑

RNk∈Φ
(I)
RN

card
{

Φ
(I)
RN

}
=card

{
Φ

(I,2hop)
BS

}
(1−KT )PT
NRSZRNk,RN0

∣∣∣wRx
BSR0RN0

HRNk,RN0wRNk,MTk

∣∣∣2

1 (ZRNk,MT0 > ZRN0,MT0) . (9)

b) Second Hop: In the second hop, the received signal
at MT0, denoted by y(2)MT0

, is given by

y
(2)
MT0

=
√

(1−KT ) (PT /NRS)Z−1
RN0,MT0

hRN0,MT0wRN0,MT0s
′
0n

+
√
KT (PT /NBS)Z−1

BSR0,MT0
hBSR0,MT0w

Tx
BSR0,RN0

s0n+1

+ ĩ
(1)
BS,MT0

+ ĩ
(2)
BS,MT0

+ i
(2)
RN,MT0

+ n
(2)
MT0

, (10)

where hRN0,MT0 ∈ CN1×NTxRN , E
{
n
(2)
MT0

n
(2)∗
MT0

}
= σ2

N ,√
KT (PT /NBS)Z−1BSR0,MT0

hBSR0,MT0
w

BSR0,RN0
is the in-

terfering signal from BSR0 towards MT0. ĩ(1)BS,MT0
and ĩ(2)BS,MT0

are the interference processes affecting MT0, which result
from the set of BSs constituting the single- and two-hop
transmissions, respectively. They are given by

ĩ
(1)
BS,MT0

=
∑

BSi∈Φ
(I,1hop)
BS

√
(PT /NBS)Z−1

BSi ,RN0
hBSi ,MT0wBSi ,MTisin+1

1 (ZBSi,RN0 > ZBSR0 ,RN0 )1 (ZBSi,MT0 > ηcellZRN0 ,MT0 ) ,
(11)

ĩ
(2)
BS,MT0

=
∑

BSj∈Φ
(I,2hop)
BS

√
KT (PT /NBS)Z−1

BSj ,MT0
hBSj ,MT0w

Tx
BSj ,RNjsjn+1

1
(
ZBSj,RN0 > ZBSR0 ,RN0

)
1
(
ZBSj,MT0 > ηcellZRN0 ,MT0

)
,
(12)

and

i
(2)
RN,MT0

=
∑

RNk∈Φ
(I)
RN

card
{

Φ
(I)
RN

}
=card

{
Φ

(I,2hop)
BS

}
√

(1−KT ) (PT /NRS)Z−1
RNk,MT0

hRNk,MT0

×wRNk,MT0s
′
kn1 (ZRNk,MT0 > ZRN0,MT0) . (13)

Consequently, based on (10), the SINR at MT0, denoted by
SINRRN0,MT0 , is given by (8) at the top of the page, where

Ĩ
(1)
BS,MT0

=
∑

BSi∈Φ
(I,1hop)
BS

(PT /NBS)Z−1
BSi ,MT0

|hBSi ,MT0wBSi ,MTi |
2

1 (ZBSi,RN0 > ZBSR0 ,RN0 )1 (ZBSi,MT0 > ηcellZRN0 ,MT0 ) ,
(14)

Ĩ
(2)
BS,MT0

=
∑

BSj∈Φ
(I,2hop)
BS

KT (PT /NBS)Z−1
BSj ,MT0

∣∣∣hBSj ,MT0w
Tx
BSj ,RNj

∣∣∣2
1
(
ZBSj,RN0 > ZBSR0 ,RN0

)
1
(
ZBSj,MT0 > ηcellZRN0 ,MT0

)
,
(15)

and

I
(2)
RN,MT0

=
∑

RNk∈Φ
(I)
RN

card
{

Φ
(I)
RN

}
=card

{
Φ

(I,2hop)
BS

}
(1−KT )

(
PT /N

Tx
RN

)
|hRNk,MT0wRNk,MT0 |

2

×Z−1
RNk,MT0

1 (ZRNk,MT0 > ZRN0,MT0) .

c) Design of wRN0,MT0
, wTx

BSR0,RN0
, and wRx

BSR0,RN0
:

Owing to the expected relatively small distance between
BSR0 and MT0, according to the cell-association criterion
of (2), the statistical power effect of the interference

term KT (PT /NBS)Z−1BSR0,MT0

∣∣∣hBSR0,MT0w
Tx
BSR0,RN0

∣∣∣2,
which is involved in the first hop, is expected to be
strong. Due to this, propose the design of wRN0,MT0 ,
wTx

BSR0,RN0
, and wRx

BSR0,RN0
with the aim of canceling

it, while at the same time maximizing the useful
signal terms

∣∣wRx
BSR0,RN0

HBSR0,RN0
wTx

BSR0RN0

∣∣2 and
|hRN0,MT0wRN0,MT0 |

2 of (7) and (8), respectively.
Hence, according to the MRT principle it holds that

wRN0,MT0
=

hHRN0,MT0∥∥∥hHRN0,MT0

∥∥∥ and regarding wTx
BSR0,RN0

and

wRx
BSR0,RN0

the optimization problem to be solved is:

max
wRxBSR0,RN0

,wTxBSR0,RN0

∣∣∣wRx
BSR0RN0

HBSR0RN0w
Tx
BSR0RN0

∣∣∣2
s.t.

∣∣∣hBSR0,MT0w
Tx
BSR0,RN0

∣∣∣2 = 0.

(16)

Proposition 1. If NBS > 1, the solution of (16) is given by

wRx
BSR0,RN0

= u
(l)
BSR0,RN0

wTx
BSR0,RN0

=
PhBSR0,MT0

u
(r)
BSR0,RN0∥∥∥PhBSR0,MT0

u
(r)
BSR0,RN0

∥∥∥ , (17)

where u
(l)
BSR0,RN0

and u
(r)
BSR0,RN0

are the left and right
singular vectors that correspond to the largest singular value
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of HBSR0,RN0
and

PhBSR0,MT0
= INBS − hHBSR0,MT0

(
hBSR0,MT0h

H
BSR0,MT0

)
−1

× hBSR0,MT0 . (18)

Proof: To satisfy (16), wTx
BSR0,RN0

needs to be in
the orthogonal complement space of hBSR0,MT0

and at
the same time together with wRx

BSR0,RN0
to maximize∣∣wRx

BSR0RN0
HBSR0RN0

wTx
BSR0RN0

∣∣2. Hence, (16) admits the
solution of (17) with PhBSR0,MT0

∈ CNBS×NBS being the
orthogonal projection onto the orthogonal complement of the
column space of hBSR0,MT0 .

Remark 1. (16) does not admit a solution when
NBS = 1 and, consequently, the interference term

KT (PT /NBS)Z−1BSR0,MT0

∣∣∣hBSR0,MT0w
Tx
BSR0,RN0

∣∣∣2 cannot be
eliminated. For simplification of the analysis in Section IV
and in order to observe the maximum performance that can
be attained by using FD RNs, in the rest of this paper we
assume that NBS > 1 and, hence, (16) admits the solution of

(17) according to which
∣∣∣hBSR0,MT0

wTx
BSR0,RN0

∣∣∣2 = 0.

B. Examined Performance Metric
In this work, we consider the xth percentile rate of MT0

as the performance metric of interest. It is the rate thresh-
old for which the probability that the instantaneous rate
BW log2 (1 + SINR) is smaller than that threshold is x%. To
mathematically define it, it is convenient to first define the
coverage probability, which is the probability that the SINR
at MT0 in a single-hop transmission or at both RN0 and MT0
in a two-hop transmission is greater than a particular threshold.
By defining it as Pcov (T), where T is the threshold, it is given
by

Pcov (T) = EZBS0,MT0

{
P(1hop)

cov (T;ZBS0,MT0)
}

+ EZRN0,MT0

{
P(2hop)

cov (T;ZRN0,MT0)
}
, (19)

where P
(1hop)
cov (·; ·), P

(2hop)
cov (·; ·) are the coverage probabil-

ities corresponding to one- and two-hop links, respectively.
They are given by (20) at the top of the next page. The xth
percentile rate, which we denote by Rxth, is given by the
solution of the following equation:

Pr {BW log2 (1+SINR) < Rxth} = xth

⇒ 1−Pcov

(
2

Rxth
Bw − 1

)
= xth,

(23)

where Pcov (·) is given by (19).

IV. PERFORMANCE ANALYSIS

In this section, we derive the analytical expression of Rxth.
Towards this, i) At first, we present the analytical expressions
of the required distributions to derive this expression. ii) We
consider useful geometrical approximations for tractability.

A. Preliminaries
It is evident from Section III-B that the derivation of the

analytical expression of Rxth requires the computation of

the following quantities: i) The distribution and the pdf of
ZX0,Y0

= l (rX0,Y0
)/SX0,Y0

, which we denote by FZX0,Y0
(·)

and fZX0,Y0
(·), respectively. They are given by [38, Eq. (31)]

FZX0,Y0
(x) = 1− exp

(
−πλXκ

−2/βX,Y0
0 ΥX,Y0x

2/βX,Y0

)
(24)

fZX0,Y0
(ξ) =

(
2πλXκ

−2/βX,Y0
0 ΥX,Y0ξ

2/βX,Y0
−1

/
βX,Y0

)
× exp

(
−πλXκ

−2/βX,Y0
0 ΥX,Y0ξ

2/βX,Y0

)
, (25)

where

ΥX,Y0 = exp

(
GX,Y0µX,Y0 +

1

2
G2
X,Y0

σ2
X,Y0

)
(26)

with GX,Y0
= 1

10 log10(e)
2

βX,Y0
. ii) The conditional probabil-

ities that MT0 is served via a one-hop and a two-hop link,
i.e.

χ1hop (ZBS0,MT0) = Pr
{
ZRN0,MT0 ≥ η

−1
cellZBS0,MT0

∣∣ZBS0,MT0

}
= 1− FZRN0,MT0

(
η−1

cellZBS0,MT0

)
(27)

χ2hop (ZRN0,MT0) = Pr {ZBS0,MT0 > ηcellZRN0,MT0 | ZRN0,MT0}
= 1− FZBS0,MT0

(ηcellZRN0,MT0) . (28)

iii) The probabilities that MT0 is served via a one- and a
two-hop link, i.e., χ1hop and χ2hop. χ1hop are given by

χ1hop =

∫ +∞

0

(
1− FZRN0,MT0

(
η−1

cellξ
))
fZBS0,MT0

(ξ) dξ (29)

and χ2hop=1-χ1hop.

B. Approximations

Approximation 1. For analytical tractability, we propose to
approximate SINRBSR0,RN0

, defined in (7), as as (21) at the
top of the next page, where

I
approx(1)
BS,RN0

≈
∑

BSi∈Φ
(I,1hop)
BS

PT
NBSZBSi,RN0

∣∣∣wRx
BSR0RN0

HBSi,RN0
wBSi,MTi

∣∣∣2
1 (ZBSi,RN0 > ZBSR0,RN0

) , (30)

I
approx(2)
BS,RN0

≈
∑

BSj∈Φ
(I,2hop)
BS

KTPT
NBSZBSj,RN0

∣∣∣wRx
BSR0RN0

HBSj,MT0
wTx

BSj,RNj

∣∣∣2
1
(
ZBSj,RN0 > ZBSR0,RN0

)
, (31)

and

IapproxRN,RN0
≈
∑

RNk∈Φ
(I)
RN

card
{

Φ
(I)
RN

}
=card

{
Φ

(I,2hop)
BS

}
(1−KT )PT
NTx
RNZRNk,RN0

|hRNk,RN0wRNk,MTk |
2. (32)

Remark 2. (30) and (31) occur by not taking into account
the indicator functions 1

(
ZBSi,MT0 > ηcellZRN0,MT0

)
and

1
(
ZBSj,MT0

> ηcellZRN0,MT0

)
in (9). By considering that

the communication takes place in two hops and by excluding
shadowing for simplicity, such an approximation restricts the
interfering BSs of RN0, related to the single- and two-hop
transmissions, to the area that lies outside the disc with
center RN0 and radius equal to rBSR0,RN0 (Fig. 1). Such
an assumption is expected to hold reasonably well for RN



8

P(1hop)
cov (T;ZBS0,MT0) = Pr {SINRBS0,MT0 > T| ZBS0,MT0}Pr

{
ZRN0,MT0 ≥ η

−1
cellZBS0,MT0

∣∣ZBS0,MT0

}
P(2hop)

cov (T;ZRN0,MT0) = Pr {SINRBSR0,RN0 > T and SINRRN0,MT0 > T| ZRN0,MT0}
× Pr {ZBS0,MT0 > ηcellZRN0,MT0 | ZRN0,MT0} .

(20)

SINRapprox
BSR0,RN0

=
KT (PT /NBS)

∣∣wRx
BSR0RN0

HBSR0,RN0w
Tx
BSR0,RN0

∣∣2 Z−1
BSR0,RN0

σ2
N + (1−KT ) (PT /NTx

RN )
∣∣∣wRx

BSR0,RN0
HSIwRN0,MT0

∣∣∣2 + I
approx(1)
BS,RN0

+ I
approx(2)
BS,RN0

+ IapproxRN,RN0

, (21)

SINRapprox
RN0,MT0

≈
(1−KT )

(
PT /N

Tx
RN

)
|hRN0,MT0wRN0,MT0 |

2 Z−1
RN0,MT0

σ2
N + Ĩ

approx(1)
BS,MT0

+ Ĩ
approx(2)
BS,MT0

+ I
(2)
RN,MT0

, (22)

densities notably higher than the ones of the BSs since then
rRN0,MT0

tends to be small.
(32) occurs by not taking into account the indicator

function 1 (ZRNk,MT0
> ZRN0,MT0

) of (9). This
means that the interferers related to IapproxRN,RN0

can
be located in the whole dimensional plane. As with
the indicator functions 1

(
ZBSi,MT0 > ηcellZRN0,MT0

)
and 1

(
ZBSj,MT0 > ηcellZRN0,MT0

)
, the elimination of

1 (ZRNk,MT0
> ZRN0,MT0

) is expected to hold reasonably
well as an assumption for RN densities notably higher than
the corresponding ones of the BSs.

Approximation 2. We propose to approximate SINRRN0,MT0
,

defined in (8), as (22) at the top of the next page, where

Ĩ
approx(1)
BS,MT0

=
∑

BSi∈Φ
(I,1hop)
BS

(PT /NBS)Z−1
BSi,RN0

|hBSi,MT0
wBSi,MTi

|2

1 (ZBSi,MT0 > ηcellZRN0,MT0
) (33)

and

Ĩ
approx(2)
BS,MT0

=
∑

BSj∈Φ
(I,2hop)
BS

KT (PT /NBS)Z−1
BSj,MT0

∣∣∣hBSj,MT0
wTx

BSj,RNj

∣∣∣2
1
(
ZBSj,MT0 > ηcellZRN0,MT0

)
. (34)

Remark 3. (33) and (34) occur by not taking into ac-
count the indicator functions 1

(
ZBSi,RN0 > ZBSR0,RN0

)
and

1
(
ZBSj,RN0

> ZBSR0,RN0

)
in (14) and (15), respectively.

Such approximations originate by using similar arguments as
in Remark 2.

C. Coverage Probability

In this section, we provide a tractable mathematical frame-
work for the computation of Pcov (T), which is used for
the computation of Rxth according to (23). For analytical
tractability and to obtain important insights we consider the
case of NRx

RN = 1 and in Section VI we provide simulation
results also for the NRx

RN > 1 case which exhibit the same
trends with the NRx

RN = 1 case. Now, we present Lemma 1
that is used for proving Proposition 2 that is subsequently
presented.

Lemma 1. For NRx
RN = 1 and according to the design

of (17),
∣∣wRx

BSR0RN0
HBSR0,RN0

wTx
BSR0,RN0

∣∣2 follows a chi-
squared distribution with NBS − 1 degrees of freedom.

Proof : See the APPENDIX.

Proposition 2. Pcov (T), defined in (19), can be approximated
as

Pcov (T) = EZBS0,MT0

{
P(1hop)

cov (T;ZBS0,MT0)
}

+ EZRN0,MT0

{
P(2hop)

cov (T;ZRN0,MT0)
}

≈ JBS,MT (T) + JBS,RN (T)JRN,MT (T) , (35)

where JBS,MT (T), JBS,RN (T), and JRN,MT (T) are given
by (36), (37), and (38), respectively, on the next page,

p
(k)
X,Y (y) =



exp (gX,Y (y)) , k = 0

exp (gX,Y (y))
∑ k!

p1!...pk!

(
g

(1)
X,Y (y)

1!

)p1

× ...×

(
g

(k)
X,Y (y)

k!

)pk
, k ≥ 1,

(39)
where p1, ...pk are given by the non-negative integer solutions

of the equation4 p1+2p2+...kpk = k, aBS,RN = 1−KT
KT

NBS
NTxRN

T,
X,Y = {(BS,MT) , (BS,RN) , (RN,MT)}, and

gX,Y (y) = BX,Yy + CX,Yy

βX,Y
βX̄,Ȳ

g
(k)
X,Y (y) = gX,Y (y)

k∏
m=1

(
2

βX,Y
− (m− 1)

)
(κ0)−my−m

βX,Y
2

(40)

with X̄, Ȳ = {(RN,MT) , (RN,RN) , (BS,MT)} if X,Y =
{(BS,MT) , (BS,RN) , (RN,MT)}, respectively,

BBS,MT = πλ
(I,1hop)
BS ΥBS,MTΨBS,MT (−T)

+ πλ
(I,2hop)
BS ΥBS,MTΨBS,MT (−KTT)

BBS,RN = πλ
(I,1hop)
BS ΥBS,RNΨBS,RN (−T/KT)

+ πλ
(I,2hop)
BS ΥBS,RNΨBS,RN (−T)

BRN,MT = πλ
(I,2hop)
BS ΥRN,MTΨRN,MT (−T)

(41)

4These solutions can be found by using the function FrobeniusSolve of
Mathematica. However, for large NBS and NTx

RN memory issues are likely
to occur. In such a case, we propose the method described in [49, APPENDIX
C].
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JBS,MT (T) = πλBSYBS,MT

∫ ∞
0

exp (−πλBSYBS,MTy) exp

(
−πλRNYRN,MT

η
2/βRN,MT

cell

y
βBS,MT
βRN,MT

)

×
NBS−1∑
n=0

1

n!

(
−κ0y

βBS,MT
2

)n
exp

−κ0y
βBS,MT

2 σ2
NT

PT /NBS

 n∑
k=0

(
n
k

)(
− σ2

NT

PT /NBS

)n−k
p

(k)
BS,MT (y) dy, (36)

JBS,RN (T) = πλBSYBS,RN

∫ ∞
0

exp (−πλBSYBS,RNy)

NBS−2∑
n=0

1

n!

(
−κ0y

βBS,RN
2

)n
exp

−κ0y
βBS,RN

2 σ2
NT

PT /NBS


×

n∑
k=0

(
n
k

)(
− σ2

NT

PT /NBS

)n−k k∑
m=0

(
k
m

)
p

(m)
BS,RN (y)

(
−σ2

SIaBS,RN

)k−m
×
(

1 + σ2
SIaBS,RNκ0y

βBS,RN
2

)−1−κ+m

(k −m)!dy, (37)

JRN,MT (T) = πλRNYRN,MT

∫ ∞
0

exp (−πλRNYRN,MTy) exp

(
−πλBSYBS,MT

η
−2/βBS,MT

cell

y
βRN,MT
βBS,MT

)

×
NTxRN−1∑
n=0

1

n!

(
−κ0y

βRN,MT
2

)n
exp

−κ0y
βRN,MT

2 σ2
NT

PT /NTx
RN

 n∑
k=0

(
n
k

)(
− σ2

NT

PT /NTx
RN

)n−k
p

(k)
RN,MT (y)dy, (38)

and

CBS,MT = πλ
(I,2hop)
BS ΥRN,MTΨRN,MT

(
− (1−KT )

NBS
NTx
RN

T

)
CBS,RN = πλ

(I,2hop)
BS

2

βRN,RN

(
1−KT

KT

NBS
NTx
RN

T

) 2
βRN,RN

×ΥRN,RNΓ

(
− 2

βRN,RN

)
Γ

(
2

βRN,RN
+ 1

)
CRN,MT = πλ

(I,1hop)
BS ΥBS,MTΨBS,MT

(
− 1

1−KT

NTx
RN

NBS
T

)
+ πλ

(I,2hop)
BS ΥBS,MTΨBS,MT

(
− KT

1−KT

NTx
RN

NBS
T

)
,

(42)

where

ΨX,Y (x) = 1− 2F1

(
1,− 2

βX,Y
; 1− 2

βX,Y
;x

)
. (43)

Proof : See [49, APPENDIX B].
Rxth is obtained as a solution of the the equation that results

by plugging (35) into (23).

Proposition 3. In the noise-limited region, which can be
achieved for sufficiently large NBS and NTx

RN , the coverage
probability, which we denote by P (NL)

cov (T), can be approxi-
mated as

P(NL)
cov (T) ≈ J (NL)

BS,MT (T) + J (NL)
BS,RN (T)J (NL)

RN,MT (T) , (44)

where J (NL)
BS,MT (T), J (NL)

BS,RN (T), and J (NL)
RN,MT (T) are given

by (45), (46), and (45), respectively, on the next page.

Proof : See [49, APPENDIX D].

V. SYSTEM MODEL FOR HD RNS AND COMPARISON

The aim of this section is to present the case of HD RNs
and compare the achieved performance with the one of the

FD system. Towards this, we consider the same system model
as in [38] regarding the phases of communication with HD
RNs for which we extend the analysis by considering multiple-
antenna BSs and RNs. In particular, the system model consists
of two phases that have a duration of one time slot each.
In the 1st time slot, only the BSs are allowed to transmit,
whereas only the RNs in the 2nd one. Consequently, similar
to the analysis for the FD case, and by taking into account
that MRT is employed at the BSs and RNs, the instantaneous
SINR expressions SINR(HD)

BS0,MT0
in the case of a single-hop

transmission and SINR(HD)
BSR0,RN0

and SINR(HD)
RN0),MT0

in the case
of a two-hop transmission, are given by

SINR(HD)
BS0 ,MT0

=
(PT /NBS) ‖hBS0 ,MT0‖

2 Z−1
BS0 ,MT0

σ2
N + I

(1)
BS,MT0

+ I
(2)(HD)
BS,MT0

SINR(HD)
BSR0 ,RN0

=
KT (PT /NBS) ‖hBSR0 ,RN0‖

2 Z−1
BSR0 ,RN0

σ2
N + I

(1)
BS,RN0

+ I
(2)(HD)
BS,RN0

SINR(HD)
RN0 ,MT0

=
(1−KT ) (PT /NRS) ‖hRN0 ,MT0‖

2 Z−1
RN0 ,MT0

σ2
N + I

(2)(HD)
RN,MT0

,

(48)

where

I
(2)(HD)
BS,MT0

=
∑

BSj∈Φ
(I,2hop)
BS

KT (PT /NBS)Z−1
BSj ,MT0

∣∣∣hBSj ,MT0w
(HD)
BSj ,RNj

∣∣∣2
1
(
ZBSj,MT0 > ZBS0 ,MT0

)
I

(2)(HD)
BS,RN0

=
∑

BSj∈Φ
(I,2hop)
BS

KT (PT /NBS)Z−1
BSj ,RN0

∣∣∣hBSj ,RN0w
(HD)
BSj ,RNj

∣∣∣2
1
(
ZBSj,RN0 > ZBSR0 ,RN0

)
1
(
ZBSj,MT0 > ηcellZRN0 ,MT0

)
I

(2)(HD)
RN,MT0

=
∑

RNk∈Φ
(I)
RN

card
{

Φ
(I)
RN

}
=card

{
Φ

(I,2hop)
BS

}
(1−KT ) (PT /NRS)Z−1

RNk,MT0

×
∣∣∣hRNk,MT0w

(HD)
RNk,MT0

∣∣∣2 1 (ZRNk,MT0 > ZRN0,MT0).
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J (NL)
BS,MT (T) = πλBSYBS,MT

∫ ∞
0

exp (−πλBSYBS,MTy) exp

(
−πλRNYRN,MT

η
2/βRN,MT

cell

y
βBS,MT
βRN,MT

)

× exp

−κ0y
βBS,MT

2 σ2
NT

PT /NBS

NBS−1∑
n=0

1

n!

κ0y
βBS,MT

2 σ2
NT

PT /NBS

n

dy, (45)

J (NL)
BS,RN (T) = πλBSYBS,RN

∫ ∞
0

exp (−πλBSYBS,RNy) exp

−κ0y
βBS,RN

2 σ2
NT

PT /NBS

NBS−2∑
n=0

1

n!

−κ0y
βBS,RN

2 σ2
NT

PT /NBS

n

dy, (46)

J (NL)
RN,MT (T) = πλRNYRN,MT

∫ ∞
0

exp (−πλRNYRN,MTy) exp

(
−πλBSYBS,MT

η
−2/βBS,MT

cell

y
βRN,MT
βBS,MT

)

× exp

−κ0y
βRN,MT

2 σ2
NT

PT /NTx
RN

NTxRN−1∑
n=0

1

n!

−κ0y
βRN,MT

2 σ2
NT

PT /NTx
RN

n

dy, (47)

Based on (48), it can be proved with an analysis similar
to the FD case that the coverage probability in the HD case,
which we denote by P

(HD)
cov (T), can be approximated as

P(HD)
cov (T) ≈ J (HD)

BS,MT (T) + J (HD)
BS,RN (T)J (HD)

RN,MT (T) , (49)

where J (HD)
BS,MT (T), J (HD)

BS,RN (T), and J (HD)
RN,MT (T) are given

by (50), (51), and (52), respectively, on the next page,

p
(k)(HD)
X,Y (y) =



exp
(
g

(HD)
X,Y (y)

)
, k = 0

exp
(
g

(HD)
X,Y (y)

)∑ k!

p1!...pk!

(
g

(1)(HD)
X,Y (y)

1!

)p1

× ...×

(
g

(k)(HD)
X,Y (y)

k!

)pk
, k ≥ 1,

where X,Y = {(BS,MT) , (BS,RN) , (RN,MT)}, p1, ...pk
are given by the non-negative integer solutions of the equation
p1 + 2p2 + ...kpk = k, and

g
(HD)
X,Y (y) = BX,Yy

g
(k)(HD)
BS,MT (y) = g

(HD)
BS,MT (y)

k∏
m=1

(
2

βBS,MT
− (m− 1)

)
(κ0)−m

× y−m
βBS,MT

2 . (53)

By taking into account (49), the xth percentile rate, which
we denote by R

(HD)
xth , is given by the solution of the following

equation:

1− J (HD)
BS,MT

(
2

R
(HD)
xth
Bw − 1

)
− J (HD)

BS,RN

(
2

2R
(HD)
xth
Bw − 1

)

× J (HD)
RN,MT

(
2

2R
(HD)
xth
Bw − 1

)
= xth.

(54)

Proposition 4. For sufficiently large NBS and NTx
RN (noise-

lmited region), the coverage probability in the HD case, which

we denote by P (NL)(HD)
cov (T), can be approximated as

P(NL)(HD)
cov (T) ≈ J (NL)(HD)

BS,MT (T) + J (NL)(HD)
BS,RN (T)J (NL)(HD)

RN,MT (T) ,
(55)

where J (NL)(HD)
BS,MT (T), J (NL)(HD)

BS,RN (T), and J (NL)(HD)
RN,MT (T)

are given by (56), (57), and (58), respectively, on the next page.

Proof : (55) can be proved by following the same line of
thought as in (44).

Remark 4. For BBS 6= ∞, the trends regarding the com-
parison, in terms of percentile rate, between the network
with FD RNs and its HD counterpart depend on whether the
networks operate in the interference- or noise-limited region.
This depends on the values of NBS and NTx

RN .
Interference-limited region: This is the region of oper-

ation if NBS and NTx
RN are not large enough. By com-

paring (35) with (49), we observe that even in the ab-
sence of self-interference at RN0 (σ2

SI = 0) it holds
that Pcov (T) < P

(HD)
cov (T). This is due to the fact

that JBS,MT (T), JBS,RN (T), and JRN,MT (T) with re-
spect to their counterparts J (HD)

BS,MT (T), J (HD)
BS,RN (T), and

J (HD)
RN,MT (T) include the additional terms CBS,MTy

βBS,MT
βRN,MT ,

CBS,RNy
βBS,RN
βRN,RN , and CRN,MTy

βRN,MT
βBS,MT , respectively. These

terms are related to the additional interference terms i(1)RN,MT0
,

iRN,RN0
, and ĩ

(1)
BS,MT0

+ ĩ
(2)
BS,MT0

, affecting MT0 during the
one-hop communication, RN0, and MT0 during the two-hop
communication, respectively, in the case of FD RNs compared
to the HD RNs case. Hence, due to these terms and the self
interference at RN0 it holds that JBS,MT (T) < J (HD)

BS,MT (T),
JBS,RN (T) < J (HD)

BS,RN (T), and JRN,MT (T) < J (HD)
RN,MT (T),

which results in Pcov (T) < P
(HD)
cov (T).

Regarding the comparison between Rxth and R
(HD)
xth in this

region, the fact that Pcov (T) < P
(HD)
cov (T), whereas the HD

network is subject to the HD constraint, means that depending
on the values of the path-loss exponents, NBS , NTx

RN , and BBS,
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J (HD)
BS,MT (T) = πλBSYBS,MT

∫ ∞
0

exp (−πλBSYBS,MTy) exp

(
−πλRNYRN,MT

η
2/βRN,MT

cell

y
βBS,MT
βRN,MT

)

×
NBS−1∑
n=0

1

n!

(
−κ0y

βBS,MT
2

)n
exp

−κ0y
βBS,MT

2 σ2
NT

PT /NBS

 n∑
k=0

(
n
k

)(
− σ2

NT

PT /NBS

)n−k
p

(k)(HD)
BS,MT (y) dy. (50)

J (HD)
BS,RN (T) = πλBSYBS,RN

∫ ∞
0

exp (−πλBSYBS,RNy)

NBS−1∑
n=0

1

n!

(
−κ0y

βBS,RN
2

)n
exp

−κ0y
βBS,RN

2 σ2
NT

PT /NBS


×

n∑
k=0

(
n
k

)(
− σ2

NT

PT /NBS

)n−k
p

(k)(HD)
BS,RN (y) dy. (51)

J (HD)
RN,MT (T) = πλRNYRN,MT

∫ ∞
0

exp (−πλRNYRN,MTy) exp

(
−πλBSYBS,MT

η
−2/βBS,MT

cell

y
βRN,MT
βBS,MT

)

×
NTxRN−1∑
n=0

1

n!

(
−κ0y

βRN,MT
2

)n
exp

−κ0y
βRN,MT

2 σ2
NT

PT /NTx
RN

 n∑
k=0

(
n
k

)(
− σ2

NT

PT /NTx
RN

)n−k
p

(k)(HD)
RN,MT (y) dy, (52)

J (NL)(HD)
BS,MT (T) = πλBSYBS,MT

∫ ∞
0

exp (−πλBSYBS,MTy) exp

(
−πλRNYRN,MT

η
2/βRN,MT

cell

y
βBS,MT
βRN,MT

)

× exp

−κ0y
βBS,MT

2 σ2
NT

PT /NBS

NBS−1∑
n=0

1

n!

κ0y
βBS,MT

2 σ2
NT

PT /NBS

n

dy, (56)

J (NL)(HD)
BS,RN (T) = πλBSYBS,RN

∫ ∞
0

exp (−πλBSYBS,RNy) exp

−κ0y
βBS,RN

2 σ2
NT

PT /NBS

NBS−1∑
n=0

1

n!

−κ0y
βBS,RN

2 σ2
NT

PT /NBS

n

dy, (57)

J (NL)(HD)
RN,MT (T) = πλRNYRN,MT

∫ ∞
0

exp (−πλRNYRN,MTy) exp

(
−πλBSYBS,MT

η
−2/βBS,MT

cell

y
βRN,MT
βBS,MT

)

× exp

−κ0y
βRN,MT

2 σ2
NT

PT /NTx
RN

NTxRN−1∑
n=0

1

n!

−κ0y
βRN,MT

2 σ2
NT

PT /NTx
RN

n

dy, (58)

Rxth can be larger or smaller than R
(HD)
xth . In particular, it

is expected that Rxth < R
(HD)
xth for σ2

SI 6= 0 and small NBS ,
NTx
RN , and βRN,RN (which means that the interference that

RN0 experiences due to the transmissions of the interfering
relays is strong). However, as NBS and NTx

RN increase a
crossing point is expected above which Rxth > R

(HD)
xth holds.

Noise-limited region: This is the region of operation if
NBS and NTx

RN are sufficiently large. In this region it holds
that P

(NL)
cov (T) ≈ P

(NL)(HD)
cov (T), which is due to the

fact that J (NL)
BS,MT (T) = J (NL)(HD)

BS,MT (T), J (NL)
BS,RN (T) ≈

J (NL)(HD)
BS,RN (T), and J (NL)

RN,MT (T) = J (NL)(HD)
RN,MT (T) from

what we can observe by comparing (45), (46), and (47) with
(56), (57), and (58), respectively. Consequently, due to the HD
constraint it holds that R

′

xth > R
′(HD)
xth .

VI. APPLICABILITY AND LIMITATIONS OF THE DERIVED
EXPRESSIONS

The aim of this section is to provide a discussion on the
main assumptions that lead to the derived analytical expres-
sions of the percentile rate and whether these assumptions limit
their applicability.

The first main assumption is that we model the position
and number of BSs and RNs as 2 independent PPPs. This
would mean that the placement of RNs does not depend on the
placement of BSs. In reality, it is not expected of course that,
in terms of performance, placing the RNs independently of the
position of the BSs is the optimal approach. What is expected
as a real implementation is that the position of the RNs is
optimized with respect to some performance maximization
criteria, conditioned on the position of the BSs. However,
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Fig. 2: R5th vs. log2 (NT ) for βBS,MT = 4, βBS,RN = βRN,MT = 3, and BBS = 1. Dotted lines with markers illustrate the analytical
model, whereas markers illustrate Monte Carlo simulations.

we are confident that the observed trends (which the main
purpose of our work), such as the behavior as the number
of antennas increases, cannot be affected by such a case.
Secondly, another important assumption is that we do not
consider pilot contamination and we also assume that there is
a perfect CSI. Regarding pilot contamination, as we mention
in the manuscript it can be eliminated based on the method
of [42], for instance. In the case that it cannot be eliminated,
according to [41, Eq. (20)] for a massive (practically very
large) number of antennas pilot contamination results in a term
at the denominator of the SINR expressions that depends on
the shadowing and pathloss of the interfering nodes towards
the node of interest. If the number of antennas is not massive,
still such a term would appear at the denominator of the SINR
expressions, but it would depend also on the channel fading
coefficients from each of the antennas of the interfering nodes
towards the node of interest. In any case, regardless of whether
there is a massive or moderate number of antennas at the node
of interest and the interfering nodes, the same term in the
denominator of the SINR expressions at RN0 and MT0 would
appear for the cases with FD and HD RNs and also at MT0 for
the baseline network without RNs. As a result, the observed
trends would not be affected.

As far as perfect CSI is concerned, in slowly-changing
channels (low mobility) such an acquisition can be feasible.
However, even if this assumption seems unrealistic, imperfect
channel estimates would not also affect the observed trends
regarding the comparison of the FD case with the HD one and
the case without RNs since all of the cases would be affected in
the same way. Let alone that for a massive number of antennas
the effect of imperfect channel estimates is eliminated, as it is
proved in [41].

All in all, the bottom line from the above discussion is that
the aim of our work is the comparative study of the FD RNs
case with its HD counterpart and the network without RNs. As
we justified above, the trends from this comparison, which is
our goal, cannot be affected by including the above real-world
considerations.

VII. NUMERICAL RESULTS

Our aim in this section is twofold: i) To validate Remark 4
regarding the comparison of the FD with HD case. ii) To
examine whether the inclusion of the FD RNs enhances the
performance of the no-RNs network and whether a moderate
or a high antenna number is sufficient to achieve this if it is
the case.
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Fig. 3: R50th vs. log2 (NT ) for βBS,MT = 4, βBS,RN = βRN,MT = 3, and BBS = 1. Dotted lines with markers illustrate the analytical
model, whereas markers illustrate Monte Carlo simulations.

Regarding the simulation parameters, we consider PT = 45
dBm, KT = 0.5, NBS = NTx

RN = NT , FdB = 10 dB, fc =
2 GHz is the carrier frequency, µX,Y = 0 dB, σX,Y = 4
dB, BW = 180 kHz, which is the transmission bandwidth
of a resource block in the LTE-A standard, δ = 50, kMT =
10, λBS = 1

/(
πR2

cell

)
, where Rcell = 200 m is the average

radius of a cell, and λRN = 3λBS. Regarding the Monte Carlo
simulations, the same principles as in [38, Section V] apply.
In addition, the simulations refer to the exact network setup
without considering the SINR approximations of Section IV-B.

In addition, as far as the path-loss exponents βBS,MT,
βBS,RN, βRN,MT, and βRN,RN are concerned, we consider
scenarios where βBS,MT > βBS,RN, βRN,MT, βRN,RN. The
intuition behind this lies on the fact that in realistic scenarios
RNs are expected to be needed to assist the communication
between BSs and MTs for high βBS,MT. Considering this, RNs
are expected to be deployed in a way that the BS-RN and RN-
MT links are stronger than the BS-MT links, which means that
RNs are likely to be deployed on rooftops [50]. This would
likely also make βRN,RN smaller than βBS,MT.

Regarding Remark 4, for βBS,MT = 4, βBS,RN =
βRN,MT = 3, and BBS = 1, Figs. 2 and 3 illustrate R5th

and R50th vs. log2 (NT ), respectively, for the FD and HD

cases, NRx
RN equal to 1 and NT , two values of βRN,RN, and

different values of σ2
SI in the FD case5. As we observe from

Fig. 2 (a) and (c) that correspond to the case NRx
RN = 1,

for which we have derived the analytical framework, there
is only a small gap between the analytical model and the
simulations. In addition, for βRN,RN = 2.7 we see that R5th

for the HD case is higher than the corresponding one for the
FD case even under the absence of self interference if NT is
not sufficiently high. Moreover, we observe that a value of
σ2
SI equal to 10−12 is required so that a performance almost

the same as the one without self interference is achieved. On
the other hand, a value of σ2

SI equal to 10−10 results in a
substantial performance degradation. This is a clear indication
that ways to significantly mitigate σ2

SI need to be devised, such
as placing the RNs in sites which result in such small σ2

SI

values according to the particular topology of buildings and
obstacles in the area of deployment. Finally, by comparing
the plots for NRx

RN = 1 with the ones for NRx
RN = NT we

observe that in the latter case the crossing point over which
the FD network outperforms the HD one occurs for a lower
NT . This is due to the higher on average SINRBSR0,RN0 since

5R5th and R50th correspond to the rates of cell-edge and cell-median MTs,
respectively [51].
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Fig. 4: Simulation results of the optimal values of R5th and R50th

(BBS that maximizes them) vs. log2 (NT ) for βBS,MT = 4.5,
βBS,RN = βRN,MT = 3, and RRxRN = NT .

multiple antennas are used for reception and combining at
RN0. Finally, for the higher value of βRN,RN = 3.3, which
means that the interference that RN0 experiences due to other
RN transmissions is smaller than the βRN,RN = 2.7 case, we
observe from Fig. 2 (c) and (d) that for the σ2

SI = 10−12

and σ2
SI = 0 cases the FD network significantly outperforms

the HD one, which is in contrast to the βRN,RN = 2.7 case.
This is another indication that the placement of RNs should
be performed in a way that βRN,RN is as large as possible,
apart from the fact that σ2

SI should be as small as possible. All
the above trends validate the expected ones from the analytical
model according to Remark 4.

As far as R50th is concerned, from Fig. 3 we observe the
same trends for increasing NT as with R5th except for the
fact that now for σ2

SI = 10−12 and σ2
SI = 0 the network with

FD RNs outperforms its HD counterpart even for low and
moderate NT when βRN,RN = 2.7. This is justified by the
smaller network interference due to the larger distances from
their associated cells that the cell-median MTs experience
compared to the cell-edge ones. This means that a smaller
number of antennas is required to sufficiently mitigate it. Due
to the smaller network interference, we also observe that for
relatively high NT even when σ2

SI = 10−10 the FD network

can outperform the HD one.
Now, regarding the possible rate gains when FD RNs

are deployed compared to no-RNs case, in Fig. 4 we il-
lustrate R5th and R50th vs. log2 (NT ) for the FD and no-
RNs (BBS = ∞) cases with parameters βBS,MT = 4.5,
βBS,RN = βRN,MT = 3, and NRx

RN = NT . For the FD
case, the values of BBS used for R5th and R50th are the
ones that maximize them, respectively, which were obtained
through a linear search. For reasons of comparison, we also
present the corresponding values of R

(HD)
5th and R

(HD)
50th for

the HD case in which again we consider the corresponding
values of BBS that maximize them, respectively. What we can
observe from Fig. 4 are the following: i) The HD and no-
RNs cases overlap regardless of the NT value, which means
that HD relaying-cellular networks cannot outperform the ones
without RNs in terms of rate, which is reasonable due to
their HD constraint. ii) FD networks can outperform the ones
without RNs in terms of both R5th and R50th when NT is
sufficiently high and σ2

SI adequately small. In particular, the
value 10−12 gives a performance almost the same as with the
no self-interference case. ii) The rate gains of cell-edge MTs
(R5th) with respect to the no-RNs case are higher than the
ones of the cell-median MTs (R50th). This is justified by the
higher network interference that the former MTs experience
compared to the latter ones, as aforementioned, which makes
the increase in NT more beneficial for those MTs as far as
interference mitigation is concerned.

VIII. CONCLUSIONS

Our aim in this work has been to investigate, from a system-
level point of view, whether the deployment of multiple-
antenna FD RNs can enhance the rate of a typical cellular
network with multiple-antenna BSs operating in the downlink.
By considering a system-level abstraction modeling based on
the widely used tool of stochastic geometry, for the special
case of one receive antenna at the RNs we have derived an
analytical expression for the xth percentile rate. The analysis
exhibits a relatively close match with the simulation results
and reveals the following trends, which are validated by means
of Monte Carlo simulations: i) A network with HD RNs can
outperform its FD counterpart, in terms of achievable rate,
even in the absence of self-interference at the RNs if the
number of antennas at the BSs and RNs is not sufficiently
large. This is in contrast to the outcomes of literature works
that do not consider the effect of network interference. ii)
Even if the HD network substantially outperforms the one with
FD RNs for a particular number of antennas, increasing the
antennas results in a crossing point over which the FD network
becomes better in terms of performance.

Furthermore, the simulation results show that important rate
gains compared to the no-RNs case can be achieved for both
cell-edge and cell-median MTs as the number of antennas
at the BSs and FD RNs increases and for a substantially
small variance of the self interference. This poses significant
challenges regarding the design and placement of the FD RNs.
In contrast, no rate gains, regardless of the number of antennas,
can be achieved when the RNs follow the HD principle, which
is due to the HD constraint.
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To the best of our knowledge, such a study is the first
system-level study regarding the potential of FD-based relay-
ing and, in our opinion, the promising outcomes constitute a
guideline for the system designers of next-generation relay-
based cellular networks. The fact though that a large number
of antennas is required to achieve the benefits of FD relaying
if the self-interference level is not small enough crates issues
regarding the available space at the BSs and RNs to accommo-
date this number of antennas. This motivates us to study such
a network in a millimeter-wave setup as future work due to the
significantly smaller wavelength, which enables the packing of
the same number of antennas inside a smaller space.
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APPENDIX

Proof of Lemma 1

For NRx
RN = 1, it holds that u

(l)
BSR0,RN0

= 1 and

u
(r)
BSR0,RN0

=
hHBSR0,RN0

‖hBSR0,RN0‖
, where hBSR0,RN0 ∈ CN1×(NBS) is

the channel vector that corresponds to the BSR0 − RN0 link.
Consequently, it holds that∣∣∣wRx

BSR0RN0
HBSR0RN0w

Tx
BSR0RN0

∣∣∣2 =
∥∥∥PhBSR0,MT0

hHBSR0 ,RN0

∥∥∥2

= hBSR0,RN0
U (INBS − diag {1, 0, · · · , 0})UHhHBSR0,RN0

=
∥∥∥h̃BSR0,RN0

∥∥∥2

, (59)

where U is a unitary matrix, ĥBSR0,RN0
= hBSR0,RN0

U, and
h̃BSR0,RN0

∈ CN1×(NBS−1).
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