Conference paper Open Access

Distributed Massive MIMO for Estimation of a Correlated Source Vector in Sensor Networks

Serra, Jordi; Pubill, David; Verikoukis, Christos

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Distributed Massive MIMO,</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">power allocation</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">estimation</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">sensor networks</subfield>
  <controlfield tag="005">20200120172253.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">Grant numbers : This work has been partially supported by the CellFive project funded by the Spanish Ministry of Economy, Industry and Competitiveness with grant TEC2014-60130-P.© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.</subfield>
  <controlfield tag="001">1161201</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">18-20 December 2017</subfield>
    <subfield code="a">IEEE International Symposium on Signal Processing and Information Technology</subfield>
    <subfield code="c">Bilbao (Spain)</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)</subfield>
    <subfield code="a">Pubill, David</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)</subfield>
    <subfield code="a">Verikoukis, Christos</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">349392</subfield>
    <subfield code="z">md5:4a2658a1a49ea094b01ac318aef60e86</subfield>
    <subfield code="u"> Massive MIMO for Estimation of a.pdf</subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-12-18</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o"></subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)</subfield>
    <subfield code="a">Serra, Jordi</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Distributed Massive MIMO for Estimation of a Correlated Source Vector in Sensor Networks</subfield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">692480</subfield>
    <subfield code="a">Flexible FE/BE Sensor Pilot Line for the Internet of Everything</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Distributed massive MIMO (DM-MIMO) systems are a key enabler to improve the energy efficiency (EE) in future wireless networks. Thereby, herein this architecture is considered&lt;br&gt;
for the estimation of a correlated source vector in wireless sensor networks (WSN), where each sensor node amplifies and forwards its observation through a coherent Multiple Access Channel&lt;br&gt;
(MAC) channel. Namely, the fusion centre (FC) consists of a large number of distributed single antenna access points (AP) connected through a backhaul network to a central processing&lt;br&gt;
unit (CPU), where a Linear Minimum Mean Square Error (LMMSE) estimation is computed. Within this setting the exact and an approximated MSE, obtained by the LMMSE estimation,&lt;br&gt;
are derived. Bearing in mind these results, we address the design of the optimal power allocation, at each sensor node, to minimize the total transmitted power subject to an MSE estimation&lt;br&gt;
constraint. The approximation of the MSE paves the way to cast the optimal allocation problem as a Semidefinite Programming Problem (SDP). Finally, the numerical simulations show that our&lt;br&gt;
system permits to reduce significantly the total transmitted power compared to related work architectures proposing a massive MIMO system where all the antennas are collocated at the FC.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.1161200</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.1161201</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
All versions This version
Views 7272
Downloads 135135
Data volume 47.2 MB47.2 MB
Unique views 6969
Unique downloads 131131


Cite as