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Correlation Tests and Linear Spectral Statistics of
the Sample Correlation Matrix

Xavier Mestre, Pascal Vallet

Abstract—Testing the independence of the entries of multidi-
mensional Gaussian observations is a very important problem
in statistics, with a number of applications in signal processing,
radar, cognitive radio, seismography and multiple other fields.
Typically, the problem is formulated as a binary hypothesis
test, whereby the presence of correlation is declared when the
value of a certain statistic is higher than a certain predeter-
mined threshold. Most of the statistics for correlation tests are
constructed from the sample correlation matrix (also known
as sample coherence matrix in signal processing), which is
defined as a power-normalized version of the sample covariance
matrix. In this paper, correlation tests constructed from linear
spectral statistics (LSS) of the sample correlation matrix are
analyzed under the asymptotic framework where both sample
size and observation dimension become large but comparable in
magnitude. A Central Limit Theorem (CLT) is established on
this class of statistics, which is valid for generally correlated
Gaussian observations. Results show that LSS asymptotically
fluctuate as Gaussian random variables under both hypotheses,
with an asymptotic mean and variance that can be established for
each particular test. In particular, this general CLT can be used
to establish the asymptotic behavior of two of the most important
correlation test statistics, namely the Generalized Likelihood
Ratio Test (GLRT) and the Frobenius Norm Test (FNT), under
both null and alternative hypotheses. As a by-product, it is
established that LSS of sample covariance and sample correlation
matrices have exactly the same first order behavior, but quite
different asymptotic fluctuations in the second order regime. In
both cases, the LSS asymptotically behave as Gaussian random
variables, although with quite different asymptotic means and
variances.

Index Terms—Linear Spectral Statistics, Coherence Matrix,
Hadamard test, Random Matrix Theory.

I. INTRODUCTION

The detection of correlation between multiple Gaussian
random signals is an important problem in multiple scientific
fields, such as wireless sensor networks, multiantenna radar,
radioastronomy [1], [2], cognitive radio or cooperative com-
munications. The problem is equivalent to testing whether the
covariance matrix of the observations has a diagonal structure,
and can typically be formulated as a binary hypothesis test.

In order to introduce the problem, let yn, n = 1, . . . , N ,
denote a collection of M -dimensional random observation
vectors, which are assumed to be zero mean, independent
and identically distributed (i.i.d.) according to an M -variate
law with covariance matrix RM . The detection of correlation
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between the different entries of the random vector yn is then
trivially formulated as a binary hypothesis test1

H0 : RM = dg (RM )

H1 : RM 6= dg (RM )

where dg (RM ) = RM�IM and where � denotes Hadamard
product and IM the M -dimensional identity matrix.

The problem is equivalent to testing whether the matrix

CM = D
−1/2
M RMD

−1/2
M

is equal to the identity, where (·)1/2 denotes the positive square
root and DM = dg (RM ). This matrix is typically referred to
as the “correlation matrix” of the observations in the statistics
literature, although the name “coherence matrix” is more often
used in the signal processing field. The diagonal entries of CM

are all equal to one, whereas the off-diagonal values are the
correlation coefficients between different spatial entries of the
observations.

Typically, the correlation test problem is solved by con-
structing a statistic based on a sample version of the correlation
matrix defined above. More precisely, let YM denote an
M × N matrix gathering the N observation samples, i.e.
YM = [y1, . . . ,yN ]. We define R̂M = 1

NYMYH
M as the

sample covariance matrix and D̂M = R̂M � IM its diagonal.
The sample correlation matrix (also sample coherence matrix)
takes the form

ĈM = D̂
−1/2
M R̂MD̂

−1/2
M . (1)

Here again, the diagonal entries of ĈM are all equal to one,
whereas the off-diagonal entries are the Pearson’s correlation
coefficients between different rows of YM . Correlation tests
typically reject the null hypothesis based on a certain statistic
that somehow measures how high the magnitudes of the off-
diagonal entries of ĈM are. Commonly proposed statistics in
the literature include: the maximum of the off-diagonal entries
of ĈM [3] (usually referred to as the coherence of the random
matrix YM ), the maximum eigenvalue of ĈM [4], the squared
sum of the off-diagonal entries of ĈM [5] or the determinant
of ĈM [6], among others.

Traditional statistical analysis of these tests –or, more gen-
erally, of the entries of ĈM– have mainly been established
the large sample size scenario [7], whereby N →∞ for fixed
M . However, practical applications must typically work with a
sample size N than is not much higher (or even lower) than the
observation dimension (M ). In these situations, classical large
sample volume approximations are not accurate anymore, and

1Note that the diagonal entries of the covariance matrix RM may be
different depending on the hypothesis.
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other asymptotic settings that allow both N and M to increase
without bound become much more relevant. In this type of
asymptotic approach, the two parameters are allowed to grow
while being comparable in magnitude, typically by forcing
their quotient to converge to a positive constant, namely
M/N → c, 0 < c < ∞. Most of the recent works in the
statistics literature have analyzed the correlation test problem
from the perspective of this alternative asymptotic setting.

In particular, it was shown in [3] that underH0 the empirical
distribution of eigenvalues of the sample correlation matrix
converges to a Marchenko-Pastur distribution when both N
and M grow to infinity but M/N → c, 0 < c <∞. This result
is exactly the same as for the sample covariance matrix, and
implies that the normalization by the diagonal D̂M does not
affect the asymptotic eigenvalue distribution. Here, we will see
that a similar result holds also under H1. Additionally, [8], [9]
established the fact that under H0 the maximum and minimum
eigenvalues of ĈM asymptotically fluctuate according to a
Tracy-Widom law, just as it happens in the sample covariance
matrix case. This result turns out to be quite useful in order to
design the correlation test that rejects the null hypothesis for
sufficiently large values of the maximum eigenvalue of ĈM ,
as proposed in [4]. Another correlation test statistic that has
recently been characterized in this high observation asymptotic
setting is the coherence of the matrix YM , defined as the
maximum magnitude of the off-diagonal entries of ĈM . It
was shown in [10] that when M,N →∞ at the same rate, a
normalized version of this statistic (multiplied by

√
N/ logN )

converges almost surely to 2 and asymptotically fluctuates as a
Type I extreme distribution. Later, this result has been refined
and generalized to less restrictive assumptions [11], [12], [13],
[14].

In this paper, we are concerned with somewhat different
statistics of the sample correlation matrix, namely those that
make use the whole spectrum of the sample correlation matrix.
One classical correlation test that falls within this class is the
Generalized Likelihood Ratio Test (GLRT) under Gaussian
observations. The GLRT statistic is constructed by considering
the quotient between the probability densities of the obser-
vation YM under the two hypotheses (denoted as f1 (YM )
and f0 (YM )), which in the zero-mean Gaussian case can be
written as

1

MN
log

f1 (YM )

f0 (YM )
=

= −1 + ς

2M

[
log det CM + tr

[
R̂MR−1

M

]
− tr

[
D̂MD−1

M

]]
where ς is a boolean variable fixed as ς = 0 for real-valued
observations and ς = 1 for complex, circularly symmetric
observations. Given the fact that the above statistic cannot be
constructed (since RM and DM are unknown), the GLRT
proposes to an ad-hoc alternative obtained by replacing these
two matrices by their Maximum Likelihood estimates, which
are given by R̂M and D̂M respectively [6].

Thus, assuming N > M , the GLRT rejects the null
hypothesis for large values of the following statistic

η̂GLRTM =
−1

M
log det

(
ĈM

)
. (2)

Keeping in mind that the arithmetic mean of the eigenvalues of
ĈM is equal to 1, one can readily identify the above statistic as
a measure of how disperse the eigenvalues of ĈM are. Clearly,
a sample correlation matrix with very distinct eigenvalues will
indicate a clear departure from the identity matrix, which will
in turn imply that the observations are highly correlated.

There exist multiple extensions of the GLRT to more general
statistical observation structures [15], [16], [17]. One of the
most studied generalizations of this test is testing whether sev-
eral components of a Gaussian vector are correlated, namely
Wilks’ test [18]. Note that the above statistic is a particular-
ization of [18] to the case where the tested components are
all scalars. This generalization of the above GLRT has been
asymptotically studied under H0 when the dimension of the
tested vector signals scales up with the sample size [19], [20],
whereas the number of tested components remains constant.
This approach is different from the one that will be taken
here, in the sense that we will allow the number of tested
components (M ) to scale up with the sample size.

The GLRT does not really exist in the undersampled sce-
nario (N < M ), because f1 (YM ) is not bounded in the set of
positive Hermitian matrices. In order to tackle this problem,
it is customary to heuristically adapt the GLRT obtained in
the oversampled regime by simply changing the role of M
and N in the original test (see, e.g. [21], [22]). The idea is
equivalent to considering only the positive eigenvalues of ĈM

in the GLRT, which in our case leads to

η̂GLRTM =
−1

M

M∑
m=[M−N ]++1

log λ̂m (3)

where [x]
+

= min (x, 0). From now on, we will consider
this extended version of the GLRT, which is equally valid
in the undersampled (N < M ) and oversampled (N > M )
situations.

It is well known that the above correlation GLRT can be
outperformed by other alternative heuristic tests that, while
still exploiting the whole spectrum of ĈM , directly examine
the magnitude of the off-diagonal entries of ĈM . As explained
above, one such consists in measuring the total squared mag-
nitude of the off-diagonal elements of the sample correlation
matrix. Since the diagonal entries of ĈM are all identically
one, this this is equivalent to checking the squared magnitude
of the entries of the whole matrix. One popular choice to
measure these magnitudes is the Frobenius Norm Test [5],
which rejects the null hypothesis for sufficiently large values
of

η̂FNTM =
1

M

∥∥∥ĈM

∥∥∥2

F
=

1

M
tr
[
Ĉ2
M

]
. (4)

This test was proposed in [1] as an approximation of the GLRT
for low values of the cross-correlation coefficients under H1

and was recently shown to be a locally most powerful invariant
test (LMPIT) for the correlation detection problem [23]. The
asymptotic behavior of η̂FNTM under H0 was examined in [5]
under the assumption that both M and N tend to infinity
while M/N → c, 0 < c < ∞. More specifically, it can
be shown from [5] that the statistic in (4) asymptotically
fluctuates around the value 1+c as a Gaussian random variable.
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Here, we will prove that this is also the case when H1 holds,
and we will determine the asymptotic means and covariances
under either one of the hypotheses.

By examining the form of (2) and (4), we can come to the
conclusion that both tests are based on linear combinations of
a function of the eigenvalues of the sample correlation matrix.
Indeed, one can write both tests as

η̂M =
1

M

M∑
m=1

f
(
λ̂m

)
(5)

for some specific choices of the function f(z), namely f(z) =
z2 in (4) and

f(z) =

{
− log z z 6= 0

0 z = 0
(6)

in (2). The random quantities that can be formulated as in (5)
are generally referred to as Linear Spectral Statistics (LSS) of
the sample correlation matrix. The objective of this paper is
to provide a complete asymptotic description of this class of
statistics, by characterizing their convergence and fluctuations
in the general regime where both the sample size (N ) and
the observation dimension (M ) are large but comparable in
magnitude. In particular, we will establish that the LSS η̂M in
(5) is asymptotically close to a deterministic sequence η̄M , in
the sense that η̂M − η̄M → 0 almost surely as M,N → ∞
at the same rate. Furthermore, we will also prove that η̂M
asymptotically fluctuates around η̄M as a Gaussian random
variable, and we will provide closed form simple expressions
for its asymptotic mean and covariance. These results will be
particularized to the two LSS cases presented above, namely
the FNT and the GLRT. Results will be valid under both H0

and H1, so they can be used both to establish the threshold
level that guarantees a certain asymptotic probability of false
alarm, as well as to study the asymptotic power of the tests.

It should be pointed out that our study for LSS of the sample
correlation matrix is quite similar to the one carried out in [24]
for the sample covariance matrix and later extended to the
GLRT for non-Gaussian observations under H0 in [25], [26]
and to the non-centered case [27]. In fact, it will be shown
in the following sections that (under the centered Gaussian
assumption) the LSS based on these two matrices have an
equivalent first order behavior, whereas the second order
asymptotic fluctuations turn out to be substantially different.
Our study reveals that both quantities asymptotically fluctuate
as Gaussian random variables, but with different means and
variances. This means that the normalization by the diagonal
random matrices D̂

−1/2
M in (1) is equivalent to the normaliza-

tion by the deterministic D
−1/2
M only as far as the first order

asymptotic behavior is concerned. A substantially different
behavior is observed in terms of fluctuations depending on
whether random or deterministic normalization is employed.

On the other hand, it was recently brought to our attention
that a similar study as the one presented here has recently been
carried out in [28]. This paper also analyzes the asymptotic
behavior of LSS of sample correlation matrices under the same
asymptotic conditions. The results in [28] are derived under
general (not necessarily Gaussian) observations, although the

asymptotic description is only valid under the null hypothesis
H0. Here, by resorting to the Gaussian assumption, we have
been able to provide a more general result that encompasses
both H0 and H1. Furthermore, our expressions for the asymp-
totic mean and variance of the LSS can be easily particularized
to the FNT and the GLRT presented above, resulting in a
very simple description of the asymptotic behavior of these
statistics.

Finally, it is worth pointing out the existence of correla-
tion detection tests based on the linear transformations of
the sample covariance matrix (see, e.g. [29]) instead of the
sample correlation one. In some cases, one may resort to the
asymptotic results in [24] in order to analyze the asymptotic
performance of these tests and compare them with the class of
LSS considered here. We will not carry out such comparison
study in this paper, although this is an interesting subject for
further study.

The rest of the paper is organized as follows. In Section
II we establish the almost sure convergence of the LSS
under the general setting where the observations are possibly
correlated. Section III then presents the main result of this
paper, namely the CLT that establishes the Gaussianity of the
LSS. These results are then particularized to the FNT and the
GLRT statistics. The proof of this theorem is presented in IV,
although most of the technical derivations have been relegated
to the appendices.

Notation The M ×M identity matrix is denoted by IM
and em is its mth column. The symbols ⊗ and � denote
Kronecker and Hadamard (element-wise) product between
matrices. Furthermore, vec(A) is a column vector formed by
piling the columns of A on top of each other and dgvec(A) is
a diagonal matrix with diagonal entries given by vec(A). On
the other hand, vdg(A) is a column vector constructed using
the diagonal entries of the square matrix A. Given a matrix
A, ‖A‖ denotes its spectral norm and, assuming A square of
dimensions M ×M , we will write dg (A) = A� IM . For a
given random variable X , its expectation is denoted as E [X]
and its variance as var(X), whereas P [A] is the probability
of a certain event A.

The following lemma will be of constant use throughout
this paper.

Lemma 1: For any two matrices A and B of the same
dimensions, we have

‖AB‖ ≤ ‖A‖ ‖B‖
‖A + B‖ ≤ ‖A‖+ ‖B‖
‖A⊗B‖ = ‖A‖ ‖B‖ .

If A, B are generic M × M matrices and B is Hermitian
positive semidefinite, we have∣∣∣∣ 1

M
tr [AB]

∣∣∣∣ ≤ ‖A‖ 1

M
tr [B] ≤ max

i
{B}ii ‖A‖ .

and
‖A�B‖ ≤ max

i
{B}ii ‖A‖ .

Proof: The first four statements are quite conventional
[30]. For the last one, see [31, Theorem 5.5.18].
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II. ALMOST SURE CONVERGENCE OF THE LSS

This section will characterize the asymptotic behavior of the
LSS described in (5). Let γ1 < . . . < γM̄ and K1, . . . ,KM̄

denote the M̄ different eigenvalues of the true correlation
matrix CM and their associated multiplicities, where clearly
1 ≤ M̄ ≤ M . In the classical regime, whereby N → ∞ for
fixed M , one can easily show that

η̂M − ηM → 0

almost surely, where

ηM ≡
1

M

M̄∑
m=1

Kmf (γm) .

We will see in this that this is not the case when the
observation dimension M is allowed to scale up with the
sample size N . In this situation, we will see that the random
variable η̂M has an asymptotic deterministic equivalent, η̄M ,
such that the difference η̂M − η̄M converges to zero almost
surely as M,N increase without bound at the same rate. In
general terms, the deterministic equivalent η̄M is generally
different from the quantity ηM above.

We will be making the following assumptions throughout
the paper:

(As1) The set of M -dimensional observations yn, n =

1, . . . , N can be expressed as yn = R
1/2
M xn where xn, n =

1, . . . , N , are standardized i.i.d. Gaussian vectors of zero mean
and identity covariance matrix. The Boolean variable ς takes
on the value ς = 1 when the observations yn are real-valued
and ς = 0 when they are complex and circularly symmetric.

(As2) The observation dimension M is a function of N .
Furthermore, we assume that we are either in the under-
sampled or the over-sampled regime, so that if cM = M/N ,
we have either

0 < lim inf cM ≤ lim sup cM < 1 (7)

and the number of observations is always higher then the
observation dimension, or

1 < lim inf cM ≤ lim sup cM < +∞ (8)

so that the number of observations is always lower than the
observation dimension.

Note that in the above assumption we are implicitly avoiding
the situation where cM = M/N = 1. This is because the
structure of our proof requires that all the positive eigenvalues
of the sample correlation matrix stay away from 0 when the
dimension of the matrix scales up with the sample size. It is
well known that this can only be guaranteed when cM stays
bounded away from 1, as guaranteed by (As2). The following
assumptions are rather standard in the statistics literature of
LSS (see, e.g. [24]):

(As3) The eigenvalues of RM are contained in a compact
interval of the positive real axis, R+, for all M .

(As4) The complex function f(z) is analytical on the
positive real axis R+.

Assumption (As3) is necessary in order to guarantee that
the eigenvalues of RM (and, by extension those of R̂M ) stay
bounded above and away from zero. These assumptions are

necessary to guarantee the weak convergence of the LSS.
As for (As4), it is not strictly needed (in the sense that
all the results in this paper hold for more general functions
f(z)), although the analycity of f(z) greatly simplifies the
derivations.

We will first analyze the first order (almost sure) asymptotic
behavior of the LSS η̂M . In this study, it is important to
notice that the diagonal entries of the sample covariance matrix
converge to the true diagonal entries, even if the observation
dimension scales up with the sample size. In other words, we
can guarantee that ∥∥∥D̂M −DM

∥∥∥→ 0 (9)

almost surely under (As1)− (As3), where ‖·‖ denotes spec-
tral norm and where we recall that D̂M and DM are the
diagonal matrices constructed from the diagonal entries of R̂M

and RM respectively (see Appendix A for a proof). A direct
consequence of this is the fact that the diagonal entries of
D̂M are almost surely contained on a compact interval of R+

for all N sufficiently large. Indeed, observe that the diagonal
entries of DM are upper and lower bounded by the maximum
and minimum eigenvalues of RM respectively, and that all
these eigenvalues are contained in a compact interval of R+

according to (As3). Therefore, the convergence result in (9)
readily implies that both

∥∥∥D̂M

∥∥∥ and
∥∥∥D̂−1

M

∥∥∥ will be bounded
with probability one for all N sufficiently large. This property
is used next in order to establish the almost sure location of
the positive eigenvalues of ĈM .

Lemma 2: Assume that (As1)− (As3) hold and define the
covariance-type random matrix

C̃M = D
−1/2
M R̂MD

−1/2
M .

Then, ∥∥∥C̃M − ĈM

∥∥∥→ 0 (10)

almost surely. In particular, there exists T , a compact interval
of the positive real axis, such that all the positive eigenvalues
of ĈM are almost surely located inside T for all N sufficiently
large.

Proof: A direct application of Lemma 1 allows us to write∥∥∥C̃M − ĈM

∥∥∥ ≤
≤
(∥∥∥D̂−1/2

M

∥∥∥∥∥∥C̃M

∥∥∥+
∥∥∥D−1/2

M

∥∥∥∥∥∥ĈM

∥∥∥)∥∥∥D̂1/2
M −D

1/2
M

∥∥∥ .
By (9) and (As3) we establish that both

∥∥∥D̂−1/2
M

∥∥∥ and∥∥∥D−1/2
M

∥∥∥ are almost surely bounded for sufficiently large N .
On the other hand, it is proven in [32] that all the positive
eigenvalues of the sample covariance matrix R̂M are almost
surely located inside the interval S = [a, b] for all large N ,
where

a = inf
M

(1−
√
cM )

2 ∥∥R−1
M

∥∥−1
and b = sup

M
(1 +

√
cM )

2 ‖RM‖ .
(11)

This shows that both
∥∥∥C̃M

∥∥∥ and
∥∥∥ĈM

∥∥∥ are bounded with
probability one for sufficiently large M . On the other hand,
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if d̂k ,M and dk ,M represent the kth diagonal entries of D̂M

and DM respectively, we have∣∣∣∣√d̂k ,M −√dk ,M ∣∣∣∣ =
∣∣∣d̂k ,M − dk ,M ∣∣∣ ∣∣∣∣√d̂k ,M +

√
dk ,M

∣∣∣∣−1

.

Since both dk ,M and d̂k ,M are bounded away from zero, we
see that

∥∥∥D̂1/2
M −D

1/2
M

∥∥∥ → 0, proving (10). To prove the
second part of the lemma, observe again that [32] establishes
that all the positive eigenvalues of C̃M are located in an open
subset of the interval

T = [inf
M

(1−
√
cM )

2 1

θ
− ε, sup

M
(1 +

√
cM )

2
θ + ε]

where
θ = sup ‖RM‖ sup

∥∥R−1
M

∥∥ (12)

and where ε is small enough so that T ⊂R+. The spectral
norm convergence in (10) together with Weyl’s inequality es-
tablish that the maximum of the absolute differences between
the ordered eigenvalues of ĈM and the ordered eigenvalues
of C̃M converges to zero with probability one. Therefore, the
positive eigenvalues of ĈM will also be almost surely located
inside T for all large N .

Lemma 2 has an important consequence for the purposes of
determining the convergence of the LSS η̂M . Indeed, let η̃M be
defined as η̂M , replacing ĈM with C̃M . A direct consequence
of Lemma 2 is the fact that, under (As1)− (As4),

|η̃M − η̂M | → 0 (13)

almost surely. Indeed, we know from Lemma 2 and [32]
that the eigenvalues of both ĈM and C̃M are almost surely
located on the compact interval T for all N sufficiently
large. Furthermore, the convergence in (10) establishes that
the maximum of the absolute difference between the ordered
eigenvalues of these matrices converges to zero. This, together
with the absolute continuity of the LSS function f(·) on the
compact T shows (13).

An important consequence of (13) is the fact that we
can establish the first order convergence of LSS of the
sample correlation matrix ĈM by simply studying the LSS
of the normalized sample covariance-like matrix C̃M . The
asymptotic behavior of this type of random matrices is now
well understood in the random matrix theory literature, see
e.g. [33], [34]. In particular, let m̃M (z) denote the Stieltjes
transform of the empirical eigenvalue distribution of C̃M ,
defined as

m̃M (z) =
1

M
tr

[(
C̃M − zIM

)−1
]

where z ∈ C+ = {z ∈ C : Im z > 0}. The following the-
orem establishes that the random function m̃M (z) has an
asymptotic deterministic equivalent, in the sense that there
exists a deterministic analytic function m̄M (z) such that
|m̃M (z)− m̄M (z)| converges to zero with probability one for
all z in the upper complex semiplane.

Theorem 1: [33], [34] Let z ∈ C+ and assume that
(As1)− (As3) hold. Then, |m̃M (z)− m̄M (z)| → 0 almost

surely, where m̄M (z) is defined as

m̄M (z) =
−1

z

(
1− N

M

)
− N

M

1

ωM (z)
(14)

and where ωM (z) is the unique solution to the following
equation in C+:

z = ωM (z)

1− 1

N

M̄∑
m=1

Km
γm

γm − ωM (z)

 . (15)

The deterministic function m̄M (z) can be directly used
to establish the first order convergence of the LSS through
the integral formula (46). Indeed, by the well-known location
properties of C̃M established in [32] we know that for all N
sufficiently large, η̃M can be expressed with probability one
as

η̃M =
1

2πj

∮
C−
f(z)m̃M (z)dz (16)

where C− is a negatively oriented simple contour independent
of N that encloses the set T and not {0}. The pointwise
convergence in Theorem 1 can easily be established to hold
uniformly on C [24]. This directly establishes the following
corollary.

Corollary 1: Under (As1)− (As4), |η̂M − η̄M | → 0 al-
most surely, where

η̄M ≡
1

2πj

∮
C−
f(z)m̄M (z)dz. (17)

It is interesting to particularize this result to the two specific
tests introduced in Section I, namely the GLRT and the
FNT. In order to obtain a closed form expression for the
asymptotic deterministic equivalent of the two corresponding
statistics, we introduce here the change of variable proposed in
[35]. Indeed, consider the analytical extension of the function
ωM (z) defined in (15) to the set C\ (T ∪ {0}), the existence
of which can easily be established by the Schwarz reflection
principle [35]. Define the mapping z 7→ ω = ωM (z) and its
inverse ω 7→ z = zM (ω), given by

zM (ω) = ω

1− 1

N

M̄∑
m=1

Km
γm

γm − ω

 . (18)

Let C+
ω = ωM (C+) and

FM (ω) = f (zM (ω)) .

We can re-write (17) as

η̄M =

(
1− N

M

)
1

2πj

∮
C+

f(z)

z
dz

+
N

M

1

2πj

∮
C+ω

FM (ω)

ω
DM (ω)dω (19)

where we have defined DM (ω) as

DM (ω) =
dzM (ω)

dω
= 1− 1

N

M̄∑
m=1

Km
γ2
m

(γm − ω)
2 . (20)

It can be shown [35] that C+
ω is a simple positive contour

that encloses all the eigenvalues of the correlation matrix
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{γm}. Additionally, in the oversampled regime (7) Cω does
not enclose {0}, whereas in the undersampled one (8 ) it does.
Using this information, one can solve the above integrals via
classical Cauchy integral calculus.

A. Particularization to the Frobenius Norm Test statistic

If we set f(z) = z2 in the above integral definition of η̄M ,
only the second term turns out to be non-zero, and

η̄M =
N

M

1

2πj

∮
C+ω

1

ω
QM (ω)DM (ω)dω. (21)

where we have defined

QM (ω) = ω2

1− 1

N

M̄∑
m=1

Km
γm

γm − ω

2

. (22)

The following lemma leads to the solution of the above
integral.

Lemma 3: Let QM (ω) be defined as in (22) and let C+
ω

denote a positively oriented simple contour obtained as C+
ω =

ωM (C+) where C+ is a simple contour enclosing T (defined
in Lemma 2) and not zero. Then,

1

2πj

∮
C+ω
QM (ω)dω =

2

N

M̄∑
m=1

Kmγ
3
m + 2

cM
N

M̄∑
m=1

Kmγ
2
m.

Besides, if ζ is a complex number located in C\C+
ω , we have

1

2πj

∮
C+ω

QM (ω)

ω − ζ
dω = (ζ + cM )

2
+

2

N

M̄∑
r=1

Krγ
2
r

if ζ is enclosed by C+
ω and

1

2πj

∮
C+ω

QM (ω)

ω − ζ
dω = 2

1

N

M̄∑
k=1

Kk
γ2
k

γk − ζ
(γk + cM )

−

 1

N

M̄∑
m=1

Km
γ2
m

γm − ζ

2

when ζ is not enclosed by C+
ω . Finally, for any q, 1 ≤ q ≤ M̄ ,

we can write

1

2πj

∮
C+ω

QM (ω)

(ω − γq)2 dω = 2 (γq + cM )

1

2πj

∮
C+ω

QM (ω)

(ω − γq)3 dω = 1.

Proof: It follows from standard residue calculus together
with the fact that the diagonal entries of the correlation matrix
are all equal to one.

Using a partial fraction decomposition of DM (ω)/ω in (21)
and applying Lemma 3 we readily see that

η̄M =
1

M

M̄∑
m=1

Kmγ
2
m + cM . (23)

Note that this expression is valid for both the undersampled
and the oversampled regimes.

B. Particularization to the extended GLRT statistic

In this case, setting f(z) as in (6), we can readily see that

η̄M =
N

M

1

2πj

∮
C−ω

1

ω
LM (ω)DM (ω)dω (24)

where we have defined

LM (ω) = log

ω
1− 1

N

M̄∑
m=1

Km
γm

γm − ω

 (25)

and where log(·) here denotes the principal branch of the
complex logarithm. In the above identity we have used the
fact that the original contour C+ does not enclose {0} by
definition, and therefore the first term in (19) is identically
zero. The above integral is generally difficult to obtain due to
the presence of the logarithm. In this paper, we develop an
integration technique based on the approach in [36] which is
equally valid in the undersampled and oversampled regimes. In
order to introduce the results, we consider the M̄+1 solutions
to the following equation in µ,

µ

1− 1

N

M̄∑
m=1

Km
γm

γm − µ

 = 0 (26)

which will be denoted by µ0 < µ1 < . . . < µM̄ . It can
readily be checked that µ0 = 0 < µ1 in the oversampled
regime, whereas µ0 < 0 = µ1 in the undersampled regime
(see [35] for further details). On the other hand, it can be
readily seen [35] that the contour Cω always encloses the
points

{
γm, µm,m = 1, . . . , M̄

}
but not µ0. In particular, we

see that Cω encloses zero only in the undersampled regime.
The following proposition essentially provides the result to

the integral in (24).
Proposition 1: Let LM (ω) be defined as in (25) and assume

that cM 6= 1. Let C+
ω be a positively oriented simple contour

obtained as C+
ω = ωM (C+), where C+ is a simple contour

enclosing T (defined in Lemma 2) and not zero. Then,

1

2πj

∮
C+ω
LM (ω)dω =

1

N

M̄∑
m=1

Km
γ2
m

γm − µ0
. (27)

On the other hand, if ζ is a complex number located in C\C+
ω ,

we have
1

2πj

∮
C+ω

LM (ω)

ω − ζ
dω = log (ζ − µ0) (28)

if ζ is enclosed by Cω but ζ /∈ ∪M̄m=1 (µm, γm) and

1

2πj

∮
C+ω

LM (ω)

ω − ζ
dω =

= − log

1− 1

N

M̄∑
m=1

Km
γ2
m

(γm − µ0) (γm − ζ)

 (29)

if ζ is not enclosed by Cω . Finally, for any q, 1 ≤ q ≤ M̄ , we
may write

1

2πj

∮
C+ω

LM (ω)

(ω − γq)2 dω =
1

γq − µ0
(30)
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and
1

2πj

∮
C+ω

LM (ω)

(ω − γq)3 dω = − 1

2 (γq − µ0)
2 . (31)

Proof: See Appendix B.
The integral in (24) can be directly solved by applying the

above proposition, differentiating between the undersampled
and oversampled regimes. In the oversampled regime, Cω does
not enclose {0} and µ0 = 0, so that we can write

η̄M = − 1

M
log det CM +

N −M
M

log

∣∣∣∣1− M

N

∣∣∣∣+ 1. (32)

On the other hand, in the undersampled regime Cω always
encloses µ1 = 0 and µ0 < 0, so that using again Proposition
1 we obtain

η̄M = − 1

M
log det CM +

(
1− N

M

)
log |µ0|+

+
1

M

M̄∑
m=1

Km log

∣∣∣∣ γm
γm − µ0

∣∣∣∣+
N

M
. (33)

Observe that the GLRT statistic does not become asymptoti-
cally close to the quantity −M−1 log det CM , meaning that
the statistic is not a consistent estimator of this quantity in the
considered asymptotic regime.

III. A CENTRAL LIMIT THEOREM ON THE LINEAR
SPECTRAL STATISTICS

In the past subsection we have seen that, under assumptions
(As1)− (As4), the LSS defined in (5) accepts an asymptotic
deterministic equivalent, that is a deterministic value η̄M for
each M such that |η̂M − η̄M | → 0 almost surely. In this
section, we will investigate how the statistic η̂M fluctuates
around η̄M in this asymptotic regime. The idea is to derive
a result equivalent to the one derived in [24] for LSS of the
sample covariance matrix, but characterizing the asymptotic
distribution of LSS of the sample correlation matrix. In order
to do that, we consider an L× 1 vector of LSS given by

η̂M =
[
η̂

(1)
M , . . . , η̂

(L)
M

]T
where

η̂
(`)
M =

1

M

M∑
m=1

f`

(
λ̂m

)
and where f`(z), ` = 1, . . . , L, are functions defined according
to (As4). In principle, the case L = 1 would be enough
to characterize the asymptotic distribution of a single LSS.
However we present here a more general result considering
multiple LSS (L ≥ 1) for the sake of completeness and
because the derivation is almost identical to the case L = 1.

Let η̄M denote the L×1 vector of deterministic equivalents,
namely

η̄M =
[
η̄

(1)
M , . . . , η̄

(L)
M

]T
where each η̄

(`)
M is defined as in (19) replacing f(z) with

f`(z). The objective here is to characterize the asymptotic
fluctuations of η̂M around η̄M , by establishing a Central
Limit Theorem (CLT) on the statistic M (η̂M − η̄M ). To that

effect, we define two quantities that will take the role of the
asymptotic mean and covariance matrix respectively.

Let F`(ω) be defined as f`(z) after applying the change of
variable z = zM (ω) defined in (18), namely

F`(ω) = f`(zM (ω))

and let ΘM (ω) = (CM − ωIM )
−1. Define C− as a clockwise

oriented simple contour that encloses the interval T defined in
Lemma 2 and not zero, and let C−ω denote ωM (C−), see further
Section II. Recall from (As1) that ς is a Boolean variable that
takes the value ς = 0 if the observations are complex-valued
and ς = 1 if they are real-valued. We define µM as an L× 1
column vector with `th entry equal to

{µM}` =
1

2πj

∮
C−ω
F`(ω)µ̄M (ω) dω (34)

where µ̄M (ω) is a scalar complex function defined as

µ̄M (ω) (35)

= ς
1
N tr

[
C2
MΘ3

M (ω)
]

1− 1
N tr

[
C2
MΘ2

M (ω)
]

+
1 + ς

N
tr
[(

CMΘM (ω)− 2C2
MΘ2

M (ω)
)
�CMΘM (ω)

]
+ ω

1 + ς

N
tr
[(

CMΘ2
M (ω)�CM

)
(ΘM (ω)�CM )

]
.

On the other hand, define ΦM as an L×L matrix with (k, `)th
entry equal to

{ΦM}k,` =
−1

4π2

∮
C−ω

∮
C−ω
Fk(ω1)F`(ω2)σ̄2

M (ω1, ω2) dω1dω2

(36)
where σ̄2

M (ω1, ω2) is a bivariate complex function defined as

σ̄2
M (ω1, ω2) =

1 + ς

(ω1 − ω2)
2 −

1 + ς

N
tr
[
C2
MΘ2

M (ω1) Θ2
M (ω2)

]
+

1 + ς

N
tr [CM∆M (ω1) CM∆M (ω2)] (37)

and where have defined

∆M (ω) = Θ2
M (ω)− dg

[
CMΘ2

M (ω)
]
.

We are now in the position to establish the CLT on the statistic
M (η̂M − η̄M ), which is formulated in what follows.

Theorem 2: Assume that (As1)− (As3) hold, and that
the functions f`(z), ` = 1, . . . , L, belong to the functional
class in (As4). Consider the definitions in (34) and (36),
and assume that the column vector µM has bounded norm
and that all the eigenvalues of ΦM belong to a compact
interval of R+ independent of M . Then, the random vector
Φ
−1/2
M (M (η̂M − η̄M )− µM ) converges in law to a multi-

variate standardized Gaussian distribution, i.e.

Φ
−1/2
M (M (η̂M − η̄M )− µM )

L→ N (0, IL).

Proof: The proof is postponed to Section IV.
As an immediate consequence of this theorem, we see

that LSS based on the sample correlation matrix will asymp-
totically fluctuate as Gaussian random variables, with an
asymptotic mean and variance that will generally depend on
the selected hypothesis. We next particularize this result to the
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correlation tests presented in Section I to illustrate the practical
applicability of Theorem 2.

It is interesting to compare the expression of the asymptotic
mean and variance of the LSS in Theorem 2 with the corre-
sponding expressions established for the CLT of LSS of the
sample covariance matrix (R̂M ) in [24]. More specifically,
it was established in [24] that LSS of sample covariance
matrices asymptotically fluctuate according to a Gaussian law
with mean and variance equal to the first terms on the right
hand side of (35) and (37) respectively. The above result
shows that the normalization by the diagonals of the sample
covariance matrix has no effect on the first order behavior of
LSS but completely modifies the asymptotic behavior in terms
of fluctuations of the LSS. The last two terms in (35) and (37)
introduce the corrections in the asymptotic mean and variance
that take into account this normalization effect.

A. Asymptotic Fluctuations of the FNT Statistic

We recall that the asymptotic equivalent η̄M for this statistic
has been derived in Section II. Hence, in order to study its
asymptotic fluctuations, we only need to particularize Theorem
2 to the specific case where L = 1 and f(z) = z2. We first
derive an expression for µM and ΦM , which are both scalars
in this problem, by solving the corresponding integrals in (34)
and (36) respectively. It is shown in Appendix C that in this
situation the asymptotic mean takes the form

µM =
1 + ς

N
tr
[
(CM �CM )

2
]
− 2 + ς

N
tr
[
C2
M

]
(38)

whereas the asymptotic variance can be expressed as

ΦM = 2 (1 + ς)

(
1

N
tr
[
C2
M

])2

+

+ 4
1 + ς

N
tr
[(

CM

(
CM − dg

(
C2
M

)))2]
. (39)

It is also shown in Appendix C that supM |µM | < +∞ and
0 < infM |ΦM | ≤ supM |ΦM | < +∞. Therefore, we can
conclude that the hypotheses in Theorem 2 hold, and therefore
the normalized FNT statistic will converge in law to a standard
Gaussian random variable. This means that, in practice, we
may approximate the law of η̂M as a Gaussian random variable
with mean η̄M+µM/M and variance ΦM/M

2, with η̄M , µM
and ΦM given in (23), (38) and (39) respectively.

B. Asymptotic Fluctuations of the GLRT Statistic

We showed in Section II that the GLRT statistic is almost
surely equivalent to a deterministic quantity η̄M given by (32)-
(33) depending on whether we are in the oversampled or the
undersampled regime, respectively. We can now characterize
the fluctuations of this statistic around this value by particu-
larizing Theorem 2 to the case L = 1 and f(z) given by (6).
It is shown in Appendix C that the asymptotic mean takes the

form

µM = − ς
2

log

(
1− 1

N
tr
[
C2
MΘ2

M (µ0)
])

− 1 + ς

2
cM +

µ2
0

2

1 + ς

N
tr
[
(CM �ΘM (µ0))

2
]

− µ0
1 + ς

N
tr [CMΘM (µ0)�CMΘM (µ0)] (40)

whereas the asymptotic variance can be expressed as

ΦM = − (1 + ς) log

(
1− 1

N
tr
[
C2
MΘ2

M (µ0)
])

− 1 + ς

N
tr
[
C2
MΘ2

M (µ0)
]

+
1 + ς

N
tr
[
(CM (ΘM (µ0)− dg [CMΘM (µ0)]))

2
]

(41)

where we recall that ΘM (µ0) = (CM − µ0IM )
−1 and µ0

denotes the smallest solution to (26). It should be pointed
out that the above formulas can be greatly simplified in the
oversampled regime, whereby cM < 1 and µ0 = 0. In this
situation, we are able to write

µM = − ς
2

log (1− cM )− 1 + ς

2
cM (42)

ΦM = (1 + ς)

[
−cM − log (1− cM ) +

1

N
tr
[
(CM − IM )

2
]]
.

(43)

It is shown in Appendix C that supM |µM | < +∞ and
0 < infM |ΦM | ≤ supM |ΦM | < +∞ in both undersampled
and oversampled regimes. This implies that Theorem 2 is
applicable here, and therefore the GLRT statistic asymptoti-
cally fluctuates as a Gaussian random variable with the above
mean and variance. We may approximate the law of η̂M as
a Gaussian random variable with mean η̄M + µM/M and
variance ΦM/M

2, with η̄M , µM and ΦM respectively given
by (32), (42) and (43) in the oversampled regime and by (33),
(40) and (41) in the undersampled regime.

C. Numerical Analysis

To illustrate the accuracy of the above asymptotic approx-
imations, a simple example was considered where the true
covariance matrix was equal to the identity matrix under H0.
Under H1 the covariance matrix followed a Toeplitz structure,
with (i, j)th entry equal to {RM}i,j = ρ|i−j| for some real-
valued ρ fixed to ρ = 0.2. A total of 105 realizations of
the GLRT and the FNT statistics where evaluated, and the
corresponding false alarm and detection probabilities were
evaluated for different values of the threshold (α). Both
complex and real-valued observations where considered, and
multiple tests were conducted for both undersampled and
oversampled scenarios.

Figures 1 to 2 provide a comparison between the simulated
probabilities and the asymptotic ones as a function of the
threshold (α) in two situations where M = 30, N = 40 and
M = 100, N = 80 respectively. The asymptotic probabilities
were obtained according to a Gaussian law with mean and
variance as established in the past two subsections. Observe
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that the accuracy of the asymptotic approximation clearly
increases as M,N become large, and that some slightly better
fitting to the Gaussian law is observed in the GLRT for
moderate values of M,N . Figure 3 represents the probability
of detection as a function of the probability of false alarm for
the two tests under analysis. As illustrated in this figure, the
FNT generally outperforms the GLRT for the whole range of
false alarm probabilities.
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Fig. 1. Simulated versus asymptotic probabilities of false alarm and detection
for the GLRT (left hand side) and the FNT (right hand side) when M =
30, N = 40 and ρ = 0.2. Upper and lower plots respectively correspond to
complex and real-valued observations.
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Fig. 2. Simulated versus asymptotic probabilities of false alarm and detection
for the GLRT (left hand side) and the FNT (right hand side) when M =
100, N = 80 and ρ = 0.2. Upper and lower plots respectively correspond to
complex and real-valued observations.

IV. PROOF OF THEOREM 2

We devote this section to the proof of the CLT in Theorem
2. We will essentially follow the methodology established in
[37] to derive a CLT on the mutual information of large MIMO
channels. The method in question is based on the use of
Gaussian tools, which have proven to be extremely useful in
order to determine the asymptotic law of functionals of large-
dimensional random matrices with Gaussian entries. The main
idea behind the proof is to establish pointwise convergence
of the characteristic function of the statistic η̂M towards the
characteristic function of a Gaussian random variable.

By the Cramer-Wold device, to show that M (η̂M − η̄M ) is
asymptotically jointly Gaussian distributed, it is sufficient to
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Fig. 3. Probability of detection as a function of the probability of false alarm
when ρ = 0.2 and M = 30, N = 40 (left) or M = 100, N = 80 (right).
Upper and lower plots respectively correspond to complex and real-valued
observations.

show that
∑L
`=1 a`

(
η̂

(`)
M − η̄

(`)
M

)
is asymptotically Gaussian.

for any collection of real numbers a`, ` = 1, . . . , L. Consider
the function

ΨM (u) = exp

(
juM

L∑
m=1

am

(
η̂

(m)
M − η̄(m)

M

))
. (44)

Our main objective will be to show that

E [ΨM (u)]− exp

(
jaTµMu−

aTΦMa

2
u2

)
→ 0 (45)

pointwise in u, where a = [a1, . . . , aL]
T and where µM

and ΦM are as defined in (34) and (36) respectively. By
assumption, the norms of µM and ΦM are bounded by a
positive quantity independent of M . This assumption together
with a trivial modification of [37, Proposition 6] will complete
the proof. The rest of the section is therefore devoted to
showing (45).

The crucial point in the proofs of this paper comes from
the fact that, according to (As4), we can rewrite the LSS in
(5) in integral form as

η̂
(m)
M =

1

2πj

∮
C−M
fm(z)m̂M (z)dz (46)

where we have defined

m̂M (z) =
1

M

M∑
m=1

1

λ̂m − z
=

1

M
tr
[
D̂MQ̂M (z)

]
(47)

and
Q̂M (z) =

(
R̂M − zD̂M

)−1

(48)

and where C−M is a negatively (clockwise) oriented simple con-
tour enclosing the positive eigenvalues of ĈM and not zero.
The matrix Q̂M (z) will play an important role throughout the
derivations. In particular, using the spectral norm inequality in
Lemma 1 one can establish that∥∥∥Q̂M (z)

∥∥∥ ≤ ∥∥∥D̂−1
M

∥∥∥∥∥∥∥(ĈM − zIM
)−1

∥∥∥∥ < K

dist (z, T )
(49)

for some positive constant K independent of N .
The first step of the proof consists in replacing the original

contour C−M in (46) by a contour C− that does not depend
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on M , as in (16). Unfortunately, the large-M representation
of η̂(m)

M obtained by direct replacement of CM by C as in
(16) is not useful here, because the characteristic function
of the resulting random variable may not exist for all M .
This is because there might exist realizations for which the
eigenvalues of ĈM become dangerously close the contour C
or even on C. In order to overcome this difficulty, we will
follow the approach in [38], [39] and consider an equivalent
(large-M ) representation of η̂(m)

M that is guaranteed to have
characteristic function for all M .

Recall the definition of the support S in Lemma 2 and define
Sε = {x ∈ R : dist (x,S) ≤ ε} for ε > 0. Assume that ε is
small enough such that S2ε does not contain {0}. Let φ denote
a smooth function φ : R → [0, 1] such that φ(x) = 1 for
x ∈ Sε and φ(x) = 0 for x ∈ R\S2ε. We will write φM =

detφ
(
R̂M

)
. By [32], we know that φM = 1 with probability

one for all M sufficiently large. Therefore, we may represent
η̂

(m)
M as

η̂
(m)
M =

1

2πj

∮
C−
f (m)(z)m̂M (z)φMdz (50)

almost surely for all M sufficiently large. Having introduced
this regularization parameter, we are now in the position of in-
troducing the main technical tools that will be used in the proof
of Theorem 2. Following the approach in [37], our derivations
will be based on the partial integration formula for Gaussian
functionals, together with the Poincaré-Nash inequality. We
introduce these tools in the following proposition.

Remark 1: In what follows, the symbol O(N−k) will de-
note a general bivariate complex function that is bounded in
magnitude by ε (z1, z2)N−k, where ε (z1, z2) does not depend
on N and is such that

sup
(z1,z2)∈C×C

‖ε (z1, z2)‖ < +∞. (51)

The function itself may be different from one line to another,
and it may be matrix valued, in which case (51) is understood
as the spectral norm. On the other hand, O(N−N) should be
understood as a bivariate complex function that can be written
as O(N−`) for every ` ∈ N.

Proposition 2: Assume that, for each fixed z ∈ C, the
function Ω (X,X∗, z) : R2MN → C is continuously differ-
entiable and such that both itself and its partial derivatives are
polynomically bounded. If X is real valued, simply consider Γ
as a function on RMN , with the same properties. Than, under
(As1) we can write

E [XijΩ (X,X∗, z)] = E

[
∂Ω (X,X∗, z)

∂X∗ij

]
(52)

where2

∂

∂X∗ij
=

1 + ς

2

∂

∂ Re [Xij ]
+ j

1− ς
2

∂

∂ Im [Xij ]
.

2The second term is understood to be zero when Xij is real-valued (ς = 1).

On the other hand, we can also write

var [Ω (X,X∗, z)] ≤
M∑
i=1

N∑
j=1

E
∣∣∣∣∂Ω (X,X∗, z)

∂Xij

∣∣∣∣2

+ (1− ς)E

∣∣∣∣∣∂Ω (X,X∗, z)

∂X∗ij

∣∣∣∣∣
2

(53)

where now
∂

∂Xij
=

1 + ς

2

∂

∂ Re [Xij ]
− j

1− ς
2

∂

∂ Im [Xij ]
.

The function φM is continuously differentiable (on R2MN

for complex-valued observations, RMN for real-valued ones)
with polynomically bounded partial derivatives. If, in addi-
tion, supz∈C E

(
|Ω (X,X∗, z)φM |2

)
< C for some positive

deterministic C independent of M , then under (As1),

E [Ω (X,X∗, z)φrM ] = E [Ω (X,X∗, z)φM ] +O
(
N−N

)
(54)

for any r ∈ N, and also

E
[
Ω (X,X∗, z)

∂φM
∂Xij

]
= O

(
N−N

)
(55)

where the term O
(
N−N

)
should be understood as in Remark

1 above.
Proof: The first identity is the integration by parts formula

for Gaussian functionals, see [38], [37]. The second one
corresponds to the Poincaré-Nash inequality, see [38], [40].
For the rest of the proof, see Appendix E.

The identity in (54) basically states that we can disregard
the presence of powers of this regularization factor. One of the
conclusions of Proposition 2 is the fact that we can basically
ignore the presence of the regularization term φM up to an
error of order O

(
N−`

)
for any ` ∈ N, which will be irrelevant

for the purposes of our derivations.
Consider therefore the expectation of the function ΨM (u)

in (44) where η̂(m)
M takes the form in (50). It can readily be

checked that this function is continuously differentiable, and
one can express its derivative as

dE [ΨM (u)]

du
= jM

L∑
`=1

a`E
[(
η̂

(`)
M − η̄

(`)
M

)
ΨM (u)

]
= j

L∑
`=1

a`
1

2πj

∮
C−
f`(z1)E [αM (z1) ΨM (u)] dz1 (56)

where we have defined

αM (z) = M (m̂M (z)φM − m̄M (z)) .

The main objective of the following derivations is to investi-
gate the asymptotic behavior of the term ME [αM (z) ΨM (u)]
in (56) by means of Proposition 2.

First of all, we consider a matrix formulation of the quantity
αM (z). In (47), we have introduced an expression of m̂M (z)
as a function of the random matrix Q̂M (z), defined in (48).
Using the definition of ωM (z) in Theorem 1, we can equiva-
lently express the deterministic equivalent m̄M (z) in (14) as

m̄M (z) =
1

M
tr
[
DMQ̄M (z)

]
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where we have defined

Q̄M (z) =
ωM (z)

z
(RM − zDM )

−1
. (57)

Therefore, we can express αM (z) as

αM (z) = tr
[
D̂MQ̂M (z)φM −DMQ̄M (z)

]
.

The following related quantity will also be useful in the
derivations of this section:

βM (z) = tr
[
RM

(
Q̂M (z)φM − Q̄M (z)

)]
. (58)

In order to handle quantities like αM (z) and βM (z), we will
repeatedly use the Gaussian tools based on the integration by
parts formula in (52) and the Poincaré-Nash inequality in (53).
Before going into the technical details, we present first an
informal sketch of the rest of the proof.

A. Sketch of the proof

Let us first provide an informal explanation on how to
analyze E [αM (z1) ΨM (u)] in (56). We consider the two
products Q̂M (z)R̂M and Q̂M (z)D̂M and use the definition
of the sample covariance matrix to write

R̂M =
M∑
i=1

N∑
j=1

XijR
1/2
M

eix
H
j

N
R

1/2
M (59)

where ei is the ith column of the identity IM and xj the jth
column of X. By inserting the decomposition in (59) into the
following expressions (and the equivalent for D̂M ) and then
applying the integration by parts formula in (52), we will be
able to write

E
[
Q̂M (z1)D̂MφMΨM (u)

]
= E

[
Q̂M (z1)DMφMΨM (u)

]
+ (other terms) +O

(
N−N

)
(60)

and

E
[
Q̂M (z1)R̂MφMΨM (u)

]
=

z1

ωM (z1)
×

×E
[
Q̂M (z1)RMφMΨM (u)

]
+(other terms)+O

(
N−N

)
(61)

Then, combining the above two equations by the trivial identity

Q̂M (z1)
(
R̂M − z1D̂M

)
= IM (62)

and right multiplying both sides of the result by Q̄M (z1)DM ,
we will obtain

E
[
Q̂M (z1)DMφMΨM (u)

]
= Q̄M (z1)DME [φMΨM (u)]

+ (other terms) +O
(
N−N

)
.

This can be directly inserted into (60), leading to (after taking
traces)

E [αM (z1) ΨM (u)] = (other terms) +O
(
N−N

)
. (63)

By investigating the asymptotic behavior of the “other terms”
we will obtain

E [αM (z1) ΨM (u)] =
µ̄M (ωM (z1))

DM (ωM (z1))
E [ΨM (u)] +

+ ju
L∑

m=1

am
2πj

∮
C−

fm(z2)σ̄2
M (ωM (z1) , ωM (z2))

DM (ωM (z1))DM (ωM (z2))
dz2×

× E [ΨM (u)] +O
(
N−N

)
(64)

where DM (ω) is defined in (20). Inserting this back into (56)
and using the change of variables z 7→ ωM (z) presented in
Section II (see (19)), we will obtain

dE [ΨM (u)]

du
=
(
jaTµM − uaTΦMa

)
E [ΨM (u)]+O

(
N−1

)
where the term O

(
N−1

)
is bounded in u when this variable

is confined to a finite interval. Solving the above differential
equation, we finally obtain (45) and the proof is complete.

Next, we provide a formal proof to the above statements. In
order to facilitate the exposition, we will simplify the notation
as indicated in the following remark.

Remark 2: In the rest of this section, we will omit the
dependence on M of all quantities. Furthermore, we will write
ωi = ωM (zi), αi = αM (zi), βi = βM (zi), Q̂i = Q̂M (zi),
Q̄i = Q̄M (zi), i = 1, 2. We will also omit the dependence on
u in ΨM (u). Furthermore, from now on we assume a` = 1
(note that this is done without loss of generality by simply
redefining the functions f`(z)).

B. Asymptotic characterization of E [αM (z1) ΨM (u)]

We will follow the approach that has been outlined in
the above sketch of the proof. We begin by analyzing (61),
inserting the decomposition in (59) and applying (52), (54)
and (55), namely

E
[
Q̂1R̂Ψφ

]
(65)

=

M∑
i=1

N∑
j=1

E

[
XijQ̂1R

1/2
eix

H
j

N
R1/2Ψφ

]

= E
[
Q̂1RΨφ

]
− E

[
Q̂1R̂Ψφ

1

N
tr
[
RQ̂1φ

]]
− ς 1

N
E
[
Q̂1RQ̂1R̂Ψφ

]
+
z1 (1 + ς)

N
E
[
Q̂1dg

(
Q̂1R

)
R̂Ψφ

]
− j (1 + ς)ucM

L∑
m=1

1

2πj

∮
C−
fm(z2)E

[
Q̂1RΥ̂2R̂Ψφ

]
dz2

+O
(
N−N

)
where we have defined

Υ̂2 = Q̂2D̂Q̂2 − dg
(
Q̂2R̂Q̂2

)
. (66)
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In order to obtain this expression, we used the fact that the
partial derivatives of R̂ and Q̂1 with respect to X∗ij are

∂R̂

∂X∗ij
=

1

N
R1/2

[
xje

T
i + ςeix

H
j

]
R1/2 (67)

∂Q̂1

∂X∗ij
= − 1

N
Q̂1R

1/2
[
xje

T
i + ςeix

H
j

]
R1/2Q̂1 (68)

+
z1 (1 + ς)

N
Q̂1dg

(
R1/2xje

T
i R1/2

)
Q̂1.

Next, we observe that the second term on the right hand side
of (65 ) can be expressed as

E
[
Q̂1R̂Ψφ

1

N
tr
[
RQ̂1

]]
= E

[
Q̂1R̂Ψφ

] 1

N
tr
[
RQ̄1

]
+

1

N
E
[
Q̂1R̂Ψφβ1

]
where β1 is defined in (58). Note that the term E

[
Q̂1R̂Ψφ

]
that appears on the right hand side of the above equation
coincides with the one on the left hand side of (65). We can
insert the above identity back into (65) and use the fact that

1 +
1

N
tr
[
RQ̄1

]
=
ω1

z1
(69)

which follows from the definition of ω1 in (15). Since the
integration contour does not contain z = 0, we can ensure
that (see Appendix F)

inf
M

inf
z1∈C
|ωM (z1)| > 0. (70)

Therefore we can freely multiply both sides of the resulting
equation by z1

ω1
and write

E
[
Q̂1R̂Ψφ

]
(71)

=
z1

ω1
E
[
Q̂1RΨφ

]
− z1

ω1

1

N
E
[
Q̂1R̂Ψφβ1

]
− ς z1

ω1

1

N
E
[
Q̂1RQ̂1R̂Ψφ

]
+
z2

1

ω1

(1 + ς)

N
E
[
Q̂1dg

(
Q̂1R

)
R̂Ψφ

]
− j

z1

ω1
u

L∑
m=1

1

2πj

∮
C−
fm(z2)

1 + ς

N
E
[
Q̂1RΥ̂2R̂Ψφ

]
dz2

+O
(
N−N

)
.

On the other hand, a similar derivation can be performed with
E
[
Q̂1D̂Ψφ

]
, which gives

E
[
Q̂1D̂Ψφ

]
(72)

= E
[
Q̂1DΨφ

]
− 1

N
E
[
Q̂1R̂dg

(
RQ̂1

)
Ψφ
]

− ς 1

N
E
[
Q̂1Rdg

(
R̂Q̂1

)
Ψφ
]

+ (1 + ς) z1
1

N
E
[
Q̂1

(
R̂�RT � Q̂1

)
Ψφ
]

− ju
L∑

m=1

1

2πj

∮
C−
fm(z2)

1 + ς

N
E
[
Q̂1dg

(
RΥ̂2R̂

)
Ψφ
]
dz2

+O
(
N−N

)
.

With these two equations, we have obtained an expression
for the “other terms” in equations (60) and (61) above. As
explained before, one can combine these two equations by
using the identity in (62). After left multiplying the result
by the deterministic matrix Q̄1 we obtain the following
fundamental equation:

E
[(

Q̂1 − Q̄1

)
Ψφ
]

(73)

= −z1
1

N
E
[
Q̂1R̂dg

(
RQ̂1

)
Q̄1Ψφ

]
− ςz1

1

N
E
[
Q̂1Rdg

(
R̂Q̂1

)
Q̄1Ψφ

]
+
z1

ω1

1

N
E
[
Q̂1R̂Q̄1Ψφβ1

]
+ ς

z1

ω1

1

N
E
[
Q̂1RQ̂1R̂Q̄1Ψφ

]
− z2

1

ω1

(1 + ς)

N
E
[
Q̂1dg

(
Q̂1R

)
R̂Q̄1Ψφ

]
+ z2

1

1 + ς

N
E
[
Q̂1

(
R̂�RT � Q̂1

)
Q̄1Ψφ

]
+ j

z1

ω1
u

L∑
m=1

1

2πj

∮
C−
fm(z2)

1 + ς

N
×

× E
[
Q̂1

[
RΥ̂2R̂−ω1dg

(
RΥ̂2R̂

)]
Q̄1Ψφ

]
dz2 +O

(
N−N

)
.

We could try to use this expression on the first term on the
right hand side of (72) and, after taking the traces, obtain the
expression for E [α1Ψφ] that we are looking for. However, it
turns out that the terms in β1 will need to be further developed.
For this reason, we will first consider the fundamental equation
in (73) as a means to obtain an expression for E [β1Ψφ], which
will prove to be useful in the further development.

In order to obtain an expression for E [β1Ψφ], consider
again the equality in (73). Multiplying both sides by R, taking
traces and recalling the definition of β1 in (58), we see that

(1− Γ11)E [β1Ψφ] (74)

= −z1
1

N
Etr

[
Q̂1R̂dg

(
RQ̂1

)
Q̄1RΨφ

]
− ςz1

1

N
Etr

[
Q̂1Rdg

(
R̂Q̂1

)
Q̄1RΨφ

]
+
z1

ω1

1

N
E [ρ1β1Ψφ] + ς

z1

ω1

1

N
Etr

[
Q̂1RQ̂1R̂Q̄1RΨφ

]
− z2

1

ω1

1 + ς

N
Etr

[
Q̂1dg

(
Q̂1R

)
R̂Q̄1RΨφ

]
+ z2

1

1 + ς

N
Etr

[(
R̂� Q̂1

)(
Q̄1RQ̂1 �R

)
Ψφ
]

+ j
z1

ω1
u

L∑
m=1

1

2πj

∮
C−
fm(z2)

1 + ς

N
×

× Etr
[
Q̂1

[
RΥ̂2R̂−ω1dg

(
RΥ̂2R̂

)]
Q̄1RΨφ

]
dz2 +O

(
N−N

)
where we have defined

ρ1 = tr
[
Q̂1R̂Q̄1Rφ

]
− z1

ω1
tr
[
Q̄1RQ̄1R

]
and also Γ11 = ΓM (ωM (z1) , ωM (z1)), where

ΓM (ω1, ω2) =
1

N

M̄∑
m=1

Km
γ2
m

(γm − ω1) (γm − ω2)
. (75)
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It can be shown (see Appendix F) that

sup
M

sup
(ω1,ω2)∈Cω×Cω

|ΓM (ω1, ω2)| < 1 (76)

and therefore we can divide both sides of (74) by 1 − Γ11

in order to obtain an expression for E [β1Ψφ]. Using this
expression in (73), multiplying both sides by D and inserting
the result into (72), we finally obtain an expression for
E [α1Ψφ], given by

E [α1Ψφ] = µ̃ (z1) + ju
L∑

m=1

1

2πj

∮
C−

Θ̃ (z1, z2) fm(z2)dz2

(77)

+ ξ̃ (z1) +O
(
N−N

)
where µ̃ (z1), Θ̃ (z1, z2) and ξ̃ (z1) are defined as follows.
The term µ̃ (z1) contains the information about the asymptotic
mean and can be derived into two parts, namely µ̃ (z1) =
µ̃1 (z1) + µ̃2 (z1), where the first term

µ̃1 (z1) = −ς 1

ω1

1

N
Etr

[
R̂Q̂1RQ̂1Ψφ

]
(78)

+ ς
1

ω1

(
z1

ω1

)2
1

1− Γ11

1

N
Etr

[
RQ̂1RQ̂1R̂Q̄1Ψφ

]
appears only if the observations are real-valued, whereas the
second one –given by (79) at the top of next page– is always
present. The term Θ̃ (z1, z2) is associated with the asymptotic
covariance, and can be expressed as

Θ̃ (z1, z2) =

(
z1

ω1

)2
1

1− Γ11

1 + ς

N
Etr

[
R̂Υ̂1RΥ̂2Ψφ

]
(80)

+
1

ω1

(
z1

ω1

1

1− Γ11
− 1

)
1 + ς

N
Etr

[
R̂Q̂1RΥ̂2Ψφ

]
where we have defined the matrix

Υ̂1 = Q̄1DQ̂1 − dg
(
Q̄1RQ̂1

)
and where Υ̂2 is defined in (66). Finally the term ξ̃ (z1) is a
residual error that takes the form

ξ̃ (z1) = − z1

ω1

1

N
E [α1β1Ψφ] (81)

+
1

ω1

(
z1

ω1

)2
1

1− Γ11

1

N
E [β1ρ1Ψφ] .

Observe that the identity in (77) corresponds with the one in
(63), where now the “other terms” have been fully established.
By simple identification of the different terms in (77) with
those in (64), we see that the proof will be concluded once
we show that

µ̃ (z1) =
µ̄ (ω1)

D (ω1)
E [Ψ] +O

(
N−1

)
(82)

Θ̃ (z1, z2) =

(
σ̄2 (ω1, ω2)

D (ω1)D (ω2)
+ h (z1, z2)

)
E [Ψ] +O

(
N−1

)
(83)

ξ̃ (z1) = O
(
N−1

)
(84)

where µ̄ (ω1), σ̄2 (ω1, ω2) and D (ω) are as defined in (35),
(37) and (20) respectively (dropping the dependence on M )

and where h (z1, z2) denotes any bivariate complex function
such that

−1

4π2

∮
C−

∮
C−
h (z1, z2) dz1dz2 = 0 (85)

so that this term does not contribute to the asymptotic variance.
We will begin by analyzing the error term ξ̃ (z1), and then

proceed to the study of the mean and covariance related
quantities µ̃ (z1) and Θ̃ (z1, z2).

C. Analysis of the error term ξ̃ (z1)

The objective of this subsection is to prove that the error
term ξ̃ (z1) decays as in (84). By applying the triangular
inequality in the definition of ξ̃ (z1) in (81) and using the
bounds in (70) and (76), it suffices to investigate the terms
N−1E [α1β1Ψφ] and N−1E [β1ρ1Ψφ]. A direct application
of the Cauchy-Schwarz inequality leads to

∣∣N−1E [α1β1Ψφ]
∣∣2 ≤ E

[
|α1|2

N
φ

]
E

[
|β1|2

N
φ

]

= N2

(∣∣∣Eα1

N

∣∣∣2 + var
(α1

N

))(∣∣∣∣Eβ1

N

∣∣∣∣2 + var

(
β1

N

))
+O

(
N−N

)
. (86)

The following proposition leads to the desired result.
Proposition 3: Assume that Ai, i = 1, 2, 3 are deterministic

matrices with bounded spectral norm, and let B1 be an
Hermitian positive semidefinite matrix with bounded entries.
Consider the following two functions

z1 (z1) =
1

N
tr
[(

A1Q̂1A2 �B1

)
A3φ

]
(87)

z̃1 (z1) =
1

N
tr
[(

A1Q̂1R̂A2 �B1

)
A3φ

]
(88)

Then,

E [z1 (z1)] =
1

N
tr
[(

A1Q̄1A2 �B1

)
A3

]
+O

(
N−1

)
(89)

E
[
z̃1 (z1)

]
=
z1

ω1

1

N
tr
[(

A1Q̄1RA2 �B1

)
A3

]
+O

(
N−1

)
(90)

Furthermore, varz1 (z1) = O
(
N−2

)
and varz̃1 (z1) =

O
(
N−2

)
.

Proof: The result follows from the application of Propo-
sition 2, see further Appendix D.

Direct application of this proposition shows that∣∣N−1Eα1

∣∣2 = O
(
N−2

)
and var

(
N−1α1

)
= O

(
N−2

)
, and

that the same holds if α1 is replaced by β1. Inserting the result
into (86), we have shown that N−1E [α1β1Ψφ] = O

(
N−1

)
.

Proceeding in the same way, we can also established that
N−1E [β1ρ1Ψφ] = O

(
N−1

)
, which directly leads to

ξ̃ (z1) = O
(
N−1

)
as we wanted to show.
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µ̃2 (z1) =
z1

ω1

1 + ς

N
Etr

[
R̂Q̂1dg

(
Q̂1R

)
Ψφ
]
− (z1/ω1)

2

1− Γ11

1

N
Etr

[
RQ̂1

[
R̂dg

(
RQ̂1

)
+ ςRdg

(
R̂Q̂1

)]
Q̄1Ψφ

]
− (z1/ω1)

3

1− Γ11

1 + ς

N
Etr

[
RQ̂1dg

(
Q̂1R

)
R̂Q̄1Ψφ

]
+ z1

(z1/ω1)
2

1− Γ11

1 + ς

N
Etr

[(
R̂� Q̂1

)(
Q̄1RQ̂1 �R

)
Ψφ
]
. (79)

D. Analysis of the mean-related term µ̃ (z1)

The procedure that we follow in order to analyze the
different terms of µ̃ (z1) is as follows. We observe that µ̃ (z1)
can be expressed as the sum of quantities of the type E [XΨφ]
where X is a certain random variable, typically expressed as
the normalized trace of a function of the sample correlation
matrix. The idea here is to decorrelate this random variable
from the characteristic function, by expressing

E [XΨφ] = E [Xφ]E [Ψ] + E [(Xφ)◦Ψ] (91)

where (·)◦ .
= (·) − E(·). The second term above can be

bounded by virtue of the Cauchy-Schwarz inequality, namely

|E [(Xφ)◦Ψ]| ≤
√

var(Xφ)E
[
|Ψ|2

]
=
√

var(Xφ) (92)

where we used the fact that |Ψ| = 1. By showing that
E [Xφ] = X̄ +O

(
N−1

)
for a certain deterministic quantity

X̄ , together with var(Xφ) = O
(
N−2

)
, it readily follows that

E [XΨφ] = X̄ + O
(
N−1

)
. We will apply this reasoning to

each of the terms that define µ̃ (z1), and this will lead us to
the desired result.

As before, we divide µ̃ (z1) into two terms, µ̃ (z1) =
µ̃1 (z1) + µ̃2 (z1), and analyze them separately. Let us be-
gin with the quantity µ̃1 (z1) in (78), which is only dif-
ferent from zero if the observations are real valued. Using
the bounds in (70) and (76), we only need to study the
asymptotic behavior of quantities N−1Etr

[
Q̂1RQ̂1R̂Ψφ

]
and N−1Etr

[
RQ̂1RQ̂1R̂Q̄1Ψφ

]
. We will use the following

result, which can be established using Proposition 2.
Proposition 4: Assume that Ai, i = 1, 2, 3, 4 are de-

terministic M × M matrices with bounded spectral norm,
and let B1 and B2 denote two M ×M Hermitian positive
semi-definite matrices with bounded entries. Define the two
functions z2 = z2(z1, z2) and z̃2 = z̃2(z1, z2) as

z2 =
1

N
tr
[
A1

(
A2Q̂1A3 �B1

)
A4

(
A5Q̂2A6 �B2

)
φ
]

(93)

z̃2 =
1

N
tr
[
A1

(
A2Q̂1R̂A3 �B1

)
A4

(
A5Q̂2A6 �B2

)
φ
]
.

(94)

We can state that E [z2] and E
[
z̃2

]
can be expressed

as in (95)-(96) at the top of next page. Furthermore,
varz2(z1, z2) = O

(
N−2

)
and varz̃2(z1, z2) = O

(
N−2

)
.

Proof: See Appendix D.
Proposition 4 provides a very general result but may turn

out to be difficult to manage in the characterization of µ̃ (z1).
For this reason, we provide next a more particular result that
will be more convenient in order to study the two quantities
in this section.

Corollary 2: Assume that Ai, i = 1, 2 are deterministic
M ×M matrices with bounded spectral norm. Then, we can
write

1

N
Etr

[
A1Q̂1R̂A2Q̂2φ

]
=
z1

ω1

1

N
Etr

[
A1Q̄1RA2Q̄2

]
− z1

ω1

z2

ω2

1

1− Γ12

1

N
Etr

[
A1Q̄1RQ̄2

] 1

N
tr
[
Q̄2RA2

]
+

(z1/ω1)
2

(z2/ω2)

1− Γ12

1

N
Etr

[
A1Q̄1RQ̄2

] 1

N
tr
[
RQ̄1RA2Q̄2

]
+O

(
N−1

)
and

1

N
Etr

[
A1Q̂1A2Q̂2φ

]
=

1

N
Etr

[
A1Q̄1A2Q̄2

]
+

(z1/ω1) (z2/ω2)

1− Γ12

1

N
Etr

[
A1Q̄1RQ̄2

] 1

N
tr
[
A2Q̄2RQ̄1

]
+O

(
N−1

)
where Γ12 is defined in (75). Furthermore, the variance of
these two quantities can be written as O

(
N−2

)
.

Proof: Particularizing Proposition 4 to the case where
B1 = B2 = 11T , where 1 is an all-ones column vector, and
using the fact that 1T

(
A1 �AT

2

)
1 =tr (A1A2) we see that

1

N
Etr

[
A1Q̂1R̂A2Q̂2φ

]
=
z1

ω1

1

N
Etr

[
A1Q̄1RA2Q̄2

]
+
z2

1

ω1

z2

ω2

1

N
Etr

[
A1Q̂1RQ̂2φ

] 1

N
tr
[
Q̄2RQ̄1DA2

]
+O

(
N−1

)
and also

1

N
Etr

[
A1Q̂1A2Q̂2φ

]
=

1

N
Etr

[
A1Q̄1A2Q̄2

]
+
z1

ω1

z2

ω2

1

N
Etr

[
A1Q̂1RQ̂2φ

] 1

N
tr
(
Q̄2RQ̄1A2

)
+O

(
N−1

)
.

where we have additionally used Proposition 3 together with
the bounds in Lemma 1. Particularizing the second equation
to the case A2 = R we obtain

1

N
Etr

[
A1Q̂1RQ̂2φ

]
=

1

1− Γ12

1

N
Etr

[
A1Q̄1RQ̄2

]
+O

(
N−1

)
where we have implicitly used the bound in (76). Replacing
this result into the first two equations, we obtain the result.

We have now all the ingredients to characterize
the asymptotic behavior of the mean and variances of
N−1tr

[
Q̂1RQ̂1R̂φ

]
and N−1tr

[
RQ̂1RQ̂1R̂Q̄1φ

]
that

appear in (78). Using the fact that the variances of these two
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E [z2(z1, z2)] =
1

N
tr
[
A1

(
A2Q̄1A3 �B1

)
A4

(
A5Q̄2A6 �B2

)]
+
z1

ω1

1

N2
Etr

[(
A1 �

(
A2Q̂1RQ̂2A6

)T)
B1

(
A4 �

(
A5Q̂2R̂Q̄1A3

)T)
B2φ

]
+O

(
N−1

)
. (95)

E
[
z̃2(z1, z2)

]
=
z1

ω1

1

N
tr
[
A1

(
A2Q̄1RA3 �B1

)
A4

(
A5Q̄2A6 �B2

)]
+
z2

1

ω1

1

N2
Etr

[(
A1 �

(
A2Q̂1RQ̂2A6

)T)
B1

(
A4 �

(
A5Q̂2R̂Q̄1DA3

)T)
B2φ

]
+O

(
N−1

)
(96)

terms take the form O
(
N−2

)
together with the reasoning in

(91 )-(92), we can write the term µ̃1 (z1) as

µ̃1 (z1) = −ς 1

ω1

1

N
Etr

[
RQ̂1R̂Q̂1φ

]
E [Ψ]

+ ς
1

ω1

(
z1

ω1

)2
1

1− Γ11
×

× 1

N
Etr

[
RQ̂1R̂Q̄1RQ̂1φ

]
E [Ψ] +O

(
N−1

)
.

Therefore, developing the expectation of the two terms
N−1tr

[
Q̂1RQ̂1R̂φ

]
and N−1tr

[
RQ̂1RQ̂1R̂Q̄1φ

]
accord-

ing to Corollary 2, we obtain

µ̃1 (z1) = ς
1

ω1

1

(1− Γ11)
2×

×

((
z1

ω1

)3
1

N
tr
[(

RQ̄1

)3]− Γ11

)
E [Ψ] +O

(
N−1

)
.

Let us now deal with the term µ̃2 (z1) in (79), which is
composed of four separate terms that will be denoted as
µ̃

(1)
2 (z1) , . . . , µ̃

(4)
2 (z1). Here again, using the bounds in (70)

and (76) we may investigate the asymptotic behavior of each
of the sum terms in µ̃2 (z1) separately. The first two terms can
be directly handled using Proposition 4 and decorrelating with
respect to the characteristic function as in (91)-(92 ), that is

µ̃
(1)
2 (z1) = (1 + ς)

(
z1

ω1

)2

×

×
(

1

N
Etr

[
Q̄1Rdg

(
RQ̄1

)])
E [Ψ] +O

(
N−1

)
µ̃

(2)
2 (z1) = − 1 + ς

1− Γ11

(
z1

ω1

)3

×

× 1

N
Etr

[(
Q̄1R

)2
dg
(
RQ̄1

)]
E [Ψ] +O

(
N−1

)
For the other two terms, we need some additional results, that
we summarize in the following proposition.

Proposition 5: Let Ai, i = 1, 2 be two deterministic M ×

M matrices with bounded spectral norm. Then, we can write

1

N
Etr

[
Q̂1dg

(
Q̂1R

)
R̂A1φ

]
=

1

N
Etr

[
Q̂1dg

(
Q̂1R

)
RA1

]
−E

[
1

N
tr
[
Q̂1R̂A1

] 1

N
tr
[
RQ̂1dg

(
Q̂1R

)]]
+O

(
N−1

)
(97)

and also

1

N
Etr

[(
A1Q̂1 �A2

)(
Q̂2 � R̂

)
φ
]

=

=
1

N
Etr

[(
A1Q̂1 �A2

)(
Q̂2 �R

)]
+O

(
N−1

)
. (98)

Furthermore, the variances of these two quantities are
O
(
N−2

)
.

Proof: See Appendix D.
Let us first analyze the third term µ̃

(3)
2 (z1) . With the help of

the above proposition together with the bounds (70) and (76)
and decorrelating with respect to the characteristic function as
in (91 )-(92), we are able to write

1

N
Etr

[
RQ̂1dg

(
Q̂1R

)
R̂Q̄1Ψφ

]
=

1

N
Etr

[
RQ̄1RQ̂1dg

(
Q̂1R

)]
E [Ψ]

− E
[

1

N
tr
[
Q̂1R̂Q̄1R

]
×

× 1

N
tr
[
RQ̂1dg

(
Q̂1R

)] ]
E [Ψ] +O

(
N−1

)
The first term on the right hand side of the above equation
can be handled using Proposition 4. As for the second term,
we can apply again the decorrelation procedure and express
the expectation of the product of two variables as the product
of expectations plus an error term. More specifically, if X and
Y are two random variables, we can write

E [XY ] = E [X]E [Y ] + E [X◦Y ]

|E [X◦Y ]| ≤
√

varX

√
E
[
|Y |2

]
.

If Y is bounded and the variance of X is O
(
N−2

)
, we can

conclude that E [XY ] = E [X]E [Y ] +O
(
N−1

)
. Using this,



16

together with Propositions 3 and 4 we obtain

µ̃
(3)
2 (z1)

= − (z1/ω1)
3

1− Γ11

1 + ς

N
Etr

[(
RQ̄1

)2
dg
(
Q̄1R

)]
E [Ψ]

+
Γ11 (z1/ω1)

2

1− Γ11

1 + ς

N
tr
[
RQ̄1dg

(
Q̄1R

)]
E [Ψ] +O

(
N−1

)
.

Finally, for the fourth term, we may also apply Proposition 5
and decorrelate with respect to the characteristic function, so
that
1

N
Etr

[(
R̂� Q̂1

)(
Q̄1RQ̂1 �R

)
Ψφ
]

=
1

N
Etr

[(
R� Q̂1

)(
Q̄1RQ̂1 �R

)
φ
]
E [Ψ] +O

(
N−1

)
Then, a direct application of Proposition 4 leads to

µ̃
(4)
2 (z1) = z1

1

1− Γ11

(
z1

ω1

)2

×

× 1 + ς

N
tr
[(

Q̄1 �R
) (

Q̄1RQ̄1 �R
)]

E [Ψ] +O
(
N−1

)
.

Gathering the expression for µ̃1 (z1) and µ̃
(i)
2 (z1), i =

1, . . . , 4, and using the fact that, by definition,

Q̄1 =
ω1

z1
D−1/2 (C− ω1I)

−1
D−1/2

we obtain (82), where µ̄ (ω) and D (ω1) are defined in (35)
and (20) respectively.

E. Analysis of the variance-related term Θ̃ (z1, z2)

To finalize the proof of Theorem 2, it remains to show
that Θ̃ (z1, z2) can be asymptotically expressed as in (83).
We will follow the same procedure as in the characterization
of the mean-related term µ̃ (z1), by first decorrelating with
respect to the characteristic function according to (91)-(92)
and then investigating the asymptotic behavior of the resulting
expectations. Recalling the form of Θ̃ (z1, z2) in (80), we
observe that we will need to characterize the expectation
of traces of quantities containing three different stochastic
matrices Q̂(z). In particular, from the expression of Θ̃ (z1, z2)
we see that we need to characterize the asymptotic behavior
of random quantities of the form

ζ̂(A1,B1,B2) =

=
1

N
tr
[
R̂
(
A1Q̂1 �B1

)
R
(
Q̂2R̂Q̂2 �B2

)
φ
]

where A1 is a deterministic matrix with bounded spectral
norm, and B1,B2 are two real-valued symmetric deterministic
matrices with bounded entries. The following result provides a
first step towards the characterization of the asymptotic mean
and variance of ζ̂(A1,B1,B2). We will differentiate four
different situations, depending on the B1,B2 have bounded
norm or are all-ones matrices.

Proposition 6: Let A1 have uniformly bounded spectral
norm, and B1, B2 Hermitian positive semidefinite and with
bounded entries. Then, var

[
ζ̂(A1,B1,B2)

]
= O

(
N−2

)
.

Furthermore, if both B1 and B2 have bounded spectral norm,
we have

E
[
ζ̂(A1,B1,B2)

]
=

(z2/ω2)
2

1− Γ22
×

× 1

N
Etr

[
R
(
A1Q̄1 �B1

)
R
(
Q̄2RQ̄2 �B2

)]
+O

(
N−1

)
(99)

On the other hand, if B1 = 11T is an all-ones matrix and B2

has bounded spectral norm,

E
[
ζ̂(A1,11T ,B2)

]
=

=
(z2/ω2)

2

1− Γ22

1

N
Etr

[
RA1Q̄1R

(
Q̄2RQ̄2 �B2

)]
− (z1/ω1) (z2/ω2)

2

1− Γ22

1

N
tr
[
A1Q̄1R

]
×

× 1

N
Etr

[
RQ̄1R

(
Q̄2RQ̄2 �B2

)]
+O

(
N−1

)
(100)

whereas if B2 = 11T and B1 has bounded spectral norm,

E
[
ζ̂(A1,B1,11T )

]
=

=
(z2/ω2)

3

1− Γ22

1

N
Etr

[
R
(
A1Q̄1 �B1

)
R
(
Q̄2RQ̄2

)]
+
z2

ω2

(
1− z2

ω2

1

1− Γ22

)
×

× 1

N
Etr

[
RQ̄2R

(
A1Q̄1 �B1

)]
+O

(
N−1

)
. (101)

Finally, if B1 = B2 = 11T , we have

E
[
ζ̂(A1,11T ,11T )

]
=

=
(z2/ω2)

3

(1− Γ22) (1− Γ12)

1

N
tr
[
R
(
A1Q̄1

)
R
(
Q̄2RQ̄2

)]
+

(
z2

ω2

1

N
Etr

[
A1Q̄1RQ̄2R

]
− 1

N
tr
[
A1Q̄1R

])
×

× z1/ω1

1− Γ22

(z2/ω2)
3

(1− Γ12)
2

1

N
tr
[
RQ̄1R

(
Q̄2RQ̄2

)]
+

z2/ω2

1− Γ12

(
1− z2/ω2

(1− Γ22) (1− Γ12)

)
1

N
tr
[
RQ̄2RA1Q̄1

]
−
(

1− z2/ω2

(1− Γ22) (1− Γ12)

)
Γ12

1− Γ12

1

N
tr
[
A1Q̄1R

]
+O

(
N−1

)
(102)

Proof: See Appendix D.
Using this proposition together with Propositions 3 and 4,

we can readily establish that Θ̃ (z1, z2) is as in (103) at the
top of next page, where ∆ = (1− Γ11)

−1
(1− Γ22)

−1 and

Υ1 = Q̄1DQ̄1 − dg
(
Q̄1RQ̄1

)
Υ2 = Q̄2DQ̄2 − dg

(
Q̄2RQ̄2

)
.

We can further simply this expression by assuming that z1 6=
z2. It can readily be checked that

(z1 − z2) = (ω1 − ω2) (1− Γ12)
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Θ̃ (z1, z2) =
∆ (1 + ς) Γ12

(1− Γ12)

(
z1z2

ω1ω2

)2
1

N
tr
[
R
(
Q̄1DQ̄1

)
R
(
Q̄2DQ̄2

)]
E [Ψ]

+
∆ (1 + ς)

(1− Γ12)
2

(
z1z2

ω1ω2

)3
1

N
Etr

[
R
(
Q̄1DQ̄1

)
RQ̄2

] 1

N
tr
[
RQ̄1R

(
Q̄2DQ̄2

)]
E [Ψ]

+ ∆

(
z1z2

ω1ω2

)2
1 + ς

N
tr
[
RΥ1RΥ2

]
E [Ψ] +O

(
N−1

)
(103)

and therefore we may assume that ω1 6= ω2 whenever z1 and
z2 are located on the contour C, because |Γ12| < 1 in that
situation (cf. (76)). Furthermore, one can easily check that the
following identities hold true

1

N
tr
[
R
(
Q̄1DQ̄1

)
R
(
Q̄2DQ̄2

)]
=

Γ11 + Γ22 − 2Γ12

(z1z2)
2 (
ω−1

1 − ω−1
2

)2(
z1

ω1

)2
z2

ω2

1 + ς

N
Etr

[
R
(
Q̄1DQ̄1

)
RQ̄2

]
=

Γ11 − Γ12

ω1 − ω2
.

Using these identities in (103) and noting that ∆ =
D−1 (ω1)D−1 (ω2) we obtain (83) with

h (z1, z2) =
−1

(z1 − z2)
2 .

Observing that the integral in (85) is zero for this definition
of h (z1, z2), we conclude the proof of this theorem.

V. CONCLUSIONS

A central limit theorem for linear spectral statistics of the
sample correlation matrix has been obtained under the assump-
tion that both the sample size and the observation dimension
increase to infinity at the same rate. The theorem holds for both
real-valued and complex-valued Gaussian observations with a
general covariance structure (not necessarily proportional to
the identity) and can be applied to both the undersampled and
oversampled regimes. The result has been particularized to the
GLRT and FNT statistics, which are designed to determine
the presence of correlation among multiple –non-necessarily
identically distributed– Gaussian signals. It has been shown
that under both null and alternative hypothesis, these statistics
asymptotically fluctuate as Gaussian random variables, with
a mean and covariance that can be expressed in compact
analytical form. The analysis provided could be used in order
to establish the optimum choice of function f(·) in the LSS
in order to guarantee the best asymptotic performance in the
limit as M,N → ∞ at the same rate. However, this appears
challenging from the mathematical perspective, given the
complicated dependence of the asymptotic mean and variance
on this function. Finally, it would be interesting to compare
the asymptotic performance of correlation tests based on LSS
of the sample correlation matrix with those based on LSS of
the sample covariance matrix. Note that the results derived in
this paper are in direct relationship with those provided for
the sample covariance matrix in [24], so it seems feasible to
compare different correlation detection tests based on these
two different random matrix models. This is left for further
research.

ACKNOWLEDGMENT

The authors would like to thank Walid Hachem and Romain
Couillet for the useful technical discussions and feedback,
which helped to improve the quality of the paper.

APPENDIX A
PROOF OF (9)

In this appendix, we prove that D̂M − DM converges to
zero in spectral norm. Since the spectral norm of a diagonal
matrix is the maximum absolute value of its diagonal entries,
we only need to prove that

max
1≤k≤M

{∣∣∣d̂k,M − dk,M ∣∣∣}→ 0 a.s.

where d̂k,N and dk,N represent the kth diagonal entry of D̂M

and DM respectively. To see the above, we observe that for
any ε > 0 we can write

P
(

max
1≤k≤M

{∣∣∣d̂k,M − dk,M ∣∣∣} > ε

)
≤

≤
M∑
k=1

P
(∣∣∣d̂k,M − dk,M ∣∣∣ > ε

)
.

On the other hand, observe that we can express

d̂k,M = eHk R1/2 XXH

N
R1/2ek = dk,M

χ2 ((1 + ς)N)

(1 + ς)N

where χ2 (n) is a chi-square distributed random variable with
n degrees of freedom. Consequently,

E
[∣∣∣d̂k,M − dk,M ∣∣∣5] = |dk,M |5 E

[∣∣∣∣χ2 ((1 + ς)N)

(1 + ς)N
− 1

∣∣∣∣5
]

= O(N−3)

By Markov’s inequality,

P
(

max
1≤k≤M

{∣∣∣d̂k,M − dk,M ∣∣∣} > ε

)
≤ O(N−2)

and the result follows from the Borel-Cantelli lemma.

APPENDIX B
PROOF OF PROPOSITION 1

In order to prove Proposition 1, we follow the procedure
established in [36] for similar integrals. Observe that all the
integrals of Proposition 1 can be generally expressed in the
form

Jh =
1

2πj

∮
C+

ω

h(ω)L(ω)dω (104)
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where L(ω) is as defined in (25) –ommiting the dependence
on M– and where h(ω) is a general complex function. By
noticing that µ0 is a root of (26), we can subtract the left
hand side of (26) evaluated at µ = µ0 from the argument of
L(ω) and equivalently write

L(ω) = log

(ω − µ0)

1− 1

N

M̄∑
m=1

Kmγ
2
m

(γm − ω) (γm − µ0)

 .
The main advantage of this expression with respect to the one
in (25) comes from the fact that ω − µ0 is always ensured to
have positive real part for all ω in C+

ω , regardless of whether
we are in the undersampled or the oversampled regime. This
will tremendously simplify some of the integration steps that
follow.

Let us briefly summarize the approach in [36]. Observe that
the integral in (104) can be obtained by evaluating at x = 1
the function Jh (x) : [0, 1]→ R, defined as

Jh (x) =
1

2πj

∮
C+

ω

h(ω)L(ω, x)dω

where

L(ω, x) = log

(ω − µ0)

1− x

N

M̄∑
m=1

K̃m
γm

γm − ω


(105)

and where K̃m, m = 1, . . . , M̄ , are the following positive
weights:

K̃m = Km
γm

γm − µ0
. (106)

The main idea behind the approach in [36] comes from the
observation that Jh (x) is a differentiable function of x, and
that both Jh (0) and dJh (x) /dx can be easily computed
using conventional residue calculus. Therefore, one can find
the value of Jh(1) by finding a primitive of J ′h(x) and using
Jh(0) to fix the undetermined constant. We will begin with
the following lemma, which establishes the differentiability of
Jh(x).

Lemma 4: Let h (ω) denote a complex function such that

sup
ω∈C+

ω

|h (ω)| <∞.

The integral

Jh(x) =
1

2πj

∮
C+

ω

h (ω)L(ω, x)dω

is a differentiable function of x with derivative

J ′h(x) =
1

2πj

∮
C+

ω

h (ω)
∂L(ω, x)

∂x
dω

=
−1

2πj

∮
C+

ω

h (ω)

1− x

N

M̄∑
m=1

K̃m
γm

γm − ω

−1

×

× 1

N

M̄∑
m=1

K̃m
γm

γm − ω
dω

where K̃m is defined in (106).
Proof: Note that J ′h(x) is well defined for some x ∈

[0, 1], for example for x = 0. On the other hand, the partial
derivative ∂L(ω,x)

∂x exists for all C+
ω × [0, 1] and is absolutely

bounded by an integrable function for all x. To see this, we
need to use the triangular inequality to express∣∣∣∣∂L(ω, x)

∂x

∣∣∣∣ ≤
1−

∣∣∣∣∣∣ 1

N

M̄∑
m=1

K̃m
γm

γm − ω

∣∣∣∣∣∣
−1

×

×

∣∣∣∣∣∣ 1

N

M̄∑
m=1

K̃m
γm

γm − ω

∣∣∣∣∣∣
which is clearly bounded for all ω ∈ C+

ω . Indeed, by the
Cauchy-Schwarz inequality we will have∣∣∣∣∣∣ 1

N

M̄∑
m=1

K̃m
γm

γm − ω

∣∣∣∣∣∣
2

≤ 1

N

M̄∑
m=1

Km

(
γm

γm − µ0

)2

×

× 1

N

M̄∑
m=1

Km

∣∣∣∣ γm
γm − ω

∣∣∣∣2 < 1

where the last inequality follows from the fact that ω ∈ C+
ω

and from the the fact that µ0 always lies outside C+
ω (cf. [35,

eq. (49)]). A direct application of the Dominated Convergence
Theorem concludes the proof of this lemma.

Next, we proceed to the application of the above lemma in
order to obtain the different integrals in Proposition 1.

A. Proof of (27)

Observe that this integral can be expressed as I0 (1), where

I0 (x) =
1

2πj

∮
C+

ω

L(ω, x)dω.

By Lemma 4 we know that this function is differentiable on
(0, 1). Using the fact that Re (ω − µ0) is always positive for
all ω in C+

ω we obtain

I0 (0) =
1

2πj

∮
C+ω

log (ω − µ0) dω = 0

whereas

I ′0 (x) = −
M̄∑
k=1

µ′k (x)

where µ′k (x) is the derivative of µk (x), and µk (x), k =
1, . . . , M̄ , are defined as the ordered solutions to

1 =
x

N

M̄∑
m=1

K̃m
γm

γm − µk (x)
. (107)

Observe that there exist exactly M̄ solutions, and that they are
always located inside3 C+

ω . Note also each µk (x) is a simple
root of a polynomial equation, and is therefore differentiable
on (0, 1), so µ′k (x) is well defined.

3Indeed, one can readily check that µk (x) ∈ (µk, γk) when x ∈ (0, 1)
and since the segment (µk, γk) is always enclosed by C+

ω , so will be µk (x).
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Taking the primitive of I ′0 (x) with respect to x, we see that

I0 (x) = −
M̄∑
k=1

µk (x) + C

for some unknown constant C, which can be determined by
forcing I0 (0) = 0 and noting that µk (x)→ γk when x→ 0.
Hence,

I0 = I0 (1) = −
M̄∑
k=1

µk +
M̄∑
k=1

γk

where µk = µk(1), k = 1, . . . , M̄ , correspond to the roots
of (26). In order to obtain the expression of this integral in
Proposition 1, we use the fact that µ0 is a solution to the
equation in (26) and factorize this equation as

(µ− µ0)

1− 1

N

M̄∑
m=1

Km
γ2
m

(γm − µ) (γm − µ0)

 = 0.

By dropping the term (µ− µ0) we obtain an equation defining
the M̄ largest roots of the original equation in (26). This is a
polynomial equation that has roots µ`, ` = 1, . . . , M̄ , so that
we may identify the following two polynomials

M̄∏
`=1

(µ` − µ) =
M̄∏
`=1

(γ` − µ)

− 1

N

M̄∑
m=1

Kmγ
2
m

(γm − µ0)

M̄∏
`=1
`6=m

(γ` − µ) . (108)

By isolating the coefficients of the terms in µM̄−1 on both
sides of the above equation, we obtain the identity

M̄∑
k=1

µk =

M̄∑
k=1

γk −
1

N

M̄∑
m=1

Kmγ
2
m

(γm − µ0)

which directly leads to the expression of (27) in Proposition
1.

B. Proof of (28)-(29)

We want to compute I1 (1), where I1 (x) is a function on
the unit interval given by

I1 (x) =
1

2πj

∮
C+ω

L(ω, x)

ω − ζ
dω

where ζ is a certain complex number not belonging to the
contour C+

ω . We know from Lemma 4 that the above function
is differentiable because of the boundedness of h(ω) =
(ω − ζ)

−1 on the contour. Therefore, we can apply the strategy
in [36] once again. We will differentiate between two cases ζ
inside C+

ω and ζ outside C+
ω .

1) The value ζ lies outside C+
ω : Assume first that ζ lies

outside the contour C+
ω . In this situation, we can write

I1 (0) =
1

2πj

∮
C+ω

1

ω − ζ
log (ω − µ0) dω = 0

which follows from the fact that the integrand is holomorphic
inside the contour, since µ0 is always outside C+

ω . As for the
derivative of I1 (x), classical residue computation leads to

I ′1 (x) = −
M̄∑
k=1

1

µk (x)− ζ
µ′k (x)

where µk (x), k = 1, . . . , M̄ , are solutions to (107). In
order to find the primitive of the above function, we need
to differentiate between different regions for the location of
ζ. If ζ ∈ C\ (R+ ∪ {0}), we can write the primitive of the
above function as

I1 (x) = −
M̄∑
k=1

log (µk (x)− ζ) + C (109)

for some constant C, where log(·) is the principal branch of
the complex logarithm. Forcing I1 (0) = 0 we obtain the value
of C, and using the identity in (108) evaluated at µ = ζ we
conclude that

I1 = I1 (1) = − log

1− 1

N

M̄∑
m=1

Kmγ
2
m

(γm − µ0) (γm − ζ)

 .

Assume now that ζ ∈ R+ ∪ {0}. In that case, the primitive is
given by (109), but taking the absolute value of the argument
of the logarithm. Operating as above, we reach the conclusion
that

I1 = I1 (1) = − log

∣∣∣∣∣∣1− 1

N

M̄∑
m=1

Kmγ
2
m

(γm − µ0) (γm − ζ)

∣∣∣∣∣∣ .
However, the modulus of the argument of the logarithm can
be dropped, because (by Cauchy-Schwarz)∣∣∣∣∣∣ 1

N

M̄∑
m=1

Kmγ
2
m

(γm − µ0) (γm − ζ)

∣∣∣∣∣∣
2

≤ 1

N

M̄∑
m=1

Kmγ
2
m

(γm − µ0)
2×

× 1

N

M̄∑
m=1

Kmγ
2
m

(γm − ζ)
2 < 1

where the last inequality stems from the fact that both µ0 and
ζ lie outside C+

ω . Therefore, the same formula is valid for all
values of ζ outside the contour.

2) The value ζ lies inside C+
ω : In this situation, we can

trivially obtain I1 (0) using classical residue calculus, namely

I1 (0) =
1

2πj

∮
C+ω

1

ω − ζ
log (ω − µ0) dω = log (ζ − µ0) .

(110)
Regarding the derivative I ′1 (x), the integration technique will
ultimately depend on the value of ζ. We will differentiate
between two different cases, namely (1) ζ = γ` for some
`; and (2) ζ /∈ (µ`, γ`], ` = 1, . . . , M̄ . We will show that that
in these two cases, the integral can be expressed as in (28).
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a) Case ζ = γ` for some ` = 1, . . . , M̄ : In this case,
the derivative of the original function I ′1 (x) can easily be
computed using the classical residue theorem, namely

I ′1 (x) =
1

x
−

M̄∑
k=1

1

µk (x)− γ`
µ′k (x)

where, again, µk (x), k = 1, . . . , M̄ , are solutions to (107). We
recall that that µ` (x) ∈ (µ`, γ`) when x ∈ (0, 1). Finding a
primitive of the above equation and forcing (110) to determine
the indeterminate constant we obtain

I1 (x) =
M̄∑
k=1
k 6=`

log

∣∣∣∣ γ` − γk
γ` − µk (x)

∣∣∣∣+ log

∣∣∣∣K`γ
2
`

N

x

γ` − µ` (x)

∣∣∣∣
where we have used the fact that

lim
x→0

γk − µk (x)

x
=
Kk

N

γ2
k

γk − µ0
. (111)

Therefore, the value of I1 is obtained by allowing x → 1 in
the above expression, which leads to

I1 =
M̄∑
k=1
k 6=`

log

∣∣∣∣ γ` − γkγ` − µk

∣∣∣∣+ log

∣∣∣∣K`γ
2
`

N

1

γ` − µ`

∣∣∣∣ .
Using the identity in (108) evaluated at µ = γ` we obtain the
value in (28).

b) Case ζ does not belong to any interval (µ`, γ`], ` =
1, . . . , M̄ : In this case, the derivative of the original function
I ′1 (x), x ∈ (0, 1), can be computed by obtaining the residues
at the simple poles

{
µk (x) , k = 1, . . . , M̄

}
and {ζ}. These

are all different, because µk (x) ∈ (µk, γk), and ζ does not
belong to any one of these intervals. The derivative I ′1 (x) can
be expressed as

I ′1 (x) = −
1
N

∑M̄
m=1 K̃m

γm
γm−ζ

1− x
N

∑M̄
m=1 K̃m

γm
γm−ζ

−
M̄∑
k=1

1

µk (x)− ζ
µ′k (x) .

(112)
In order to find the primitive of this cost function, we must
differentiate between the different locations of ζ.

Assume first that ζ belongs to C\ (R+ ∪ {0}). In this
situation, we may write

I1 (x) = log

1− x

N

M̄∑
m=1

K̃m
γm

γm − ζ


−

M̄∑
k=1

log (µk (x)− ζ) + C

for some constant C, where log(·) is the principal branch
of the complex logarithm. Indeed, observe that the argument
of the second logarithm never lies on the negative real axis,
because µk (x) ∈ (µk, γk) and µ1 ≥ 0. As for the first term,
we observe that the logarithm argument lies on the negative
real axis if and only if ζ is real-valued and

1

N

M̄∑
m=1

K̃m
γm

γm − ζ
>

1

x

implying that ζ ∈ (µ`, γ`) for some `, which is in contradiction
with our initial assumption. Hence, imposing (110), we see
that for ζ ∈ C\ (R+ ∪ {0}) we may write

I1 (x) = log

1− x

N

M̄∑
m=1

K̃m
γm

γm − ζ


+ log (ζ − µ0) +

M̄∑
k=1

log

(
γk − ζ

µk (x)− ζ

)
. (113)

Forcing x→ 1 in the above equation we see that

I1 (1) = log (ζ − µ0)

where we have used the fact that ζ ∈ C\ (R+ ∪ {0}) by
assumption, together with the identity in (108) evaluated at
µ = ζ.

Next, consider the case where ζ ∈ R+ ∪ {0}. In this
situation, the primitive of (112) takes the form in (113) but
taking absolute value in the argument of the last logarithm. The
value of the original integral is obtained by allowing x → 1
in the above expression. Assume first that ζ = µ` for some
` ≥ 1. In this case, we can see that

I1 = log (µ` − µ0)

where we have used the fact that

lim
x→1

µ` (x)− µ`
1− x

=

 1

N

M̄∑
m=1

K̃m
γm

(γm − µ`)2

−1

together with the identity obtained by taking derivatives on
both sides of (108) evaluating the result at µ = µ`, namely

M̄∏
r=1,r 6=`

(µr − µ`) =

 1

N

M̄∑
m=1

K̃m
γm

(γm − µ`)2

×
×

M̄∏
r=1

(γr − µ`) .

Finally, assume that ζ /∈
{
µk, k = 1, . . . , M̄

}
. Following the

same procedure, one can show that the formula in (28) is also
valid in this case.

C. Proof of (30) and (31)

We will follow the same procedure as in the above deriva-
tions. The proof of (30) does not present any further compli-
cation and is therefore omitted. Regarding the proof of (31),
we consider once again the function

I3 (x) =
1

2πj

∮
C+ω

L(ω, x)

(ω − γq)3 dω

where L(ω, x) is defined in (105). Applying Lemma 4 with
h(ω) = (ω − γq)−3 we see that this function is differentiable
on the unit interval. We can easily compute I3 (0) with
conventional residue calculus, namely

I3 (0) =
1

2πj

∮
C+ω

log (ω − µ0)

(ω − γq)3 dω =
−1

2 (γq − µ0)
2 . (114)
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As for the derivative of I3 (x), one trivially finds that

I ′3 (x) =
N2

x3

(
γq − µ0

Kqγ2
q

)2

1− x

N

M̄∑
m=1
m6=q

K̃m
γm

γm − γq


−

M̄∑
k=1

µ′k (x)

(µk(x)− γq)3

where µk(x), k = 1, . . . , M̄ , are the solutions to (107). One
can easily find a primitive of this function as

I3 (x) = − 1

2x2

(
N (γq − µ0)

Kqγ2
q

)2

1− 2x
1

N

M̄∑
m=1
m6=q

K̃m
γm

γm − γq


+

1

2

M̄∑
k=1

1

(µk(x)− γq)2 + C

for some constant C that can be determined by forcing (114),
namely

C = −1

2

N (γq − µ0)

Kqγ2
q

1

N

M̄∑
m=1
m6=q

K̃m
γm

γm − γq


2

− N (γq − µ0)

Kqγ2
q

1

N

M̄∑
m=1
m6=q

K̃m
γm

(γm − γq)2

− 1

2

M̄∑
k=1
k 6=q

1

(γk − γq)2 −
1

2

1

(γq − µ0)
2

where we have used (111) together with

lim
x→0

(
1

x
− 1

N

K̃kγk
γk − µk (x)

)
=

1

N

M̄∑
m=1
m6=k

K̃m
γm

γm − γk

lim
x→0

1

x

 1

x
− 1

N

K̃kγk
γk − µk (x)

− 1

N

M̄∑
m=1
m6=k

K̃m
γm

γm − γk


= −K̃kγk

N2

M̄∑
m=1
m6=k

K̃m
γm

(γm − γk)
2 .

Inserting the expression of C into I3 (x) and taking the limits
as x → 1 we obtain the final expression for I3. The formula
in (31) is obtained by applying the following lemma.

Lemma 5: The identities

M̄∑
k=1
k 6=q

K̃q

(
γk

γq − γk
− µk
γq − µk

)
=

M̄∑
k=1
k 6=q

K̃k

(
γq

γk − γq
− µq
γk − µq

)
(115)

and

M̄∑
k=1
k 6=q

(
1

(γk − γq)2 −
1

(µk − γq)2

)

+

 M̄∑
k=1
k 6=q

(
1

γk − γq
− 1

µk − γq

)
2

=

= 2
1

(γq − µq)

M̄∑
k=1
k 6=q

(
1

γq − γk
− 1

γq − µk

)

− 2
1

K̃qγq

M̄∑
k=1
k 6=q

K̃k
γk

(γk − γq)2 (116)

are valid for q = 1, . . . , M̄ .
Proof: The identity in (115) can be proven by taking

first order derivatives of the polynomial identity in (108) and
evaluating the result at µ = γq , see further [35, Appendix
IV] . The identity in (116) is obtained by taking second order
derivatives at either side of (108), evaluating the result at µ =
γq and using (115) together with the identity

M̄∏
`=1

(µ` − γq) = −K̃qγq
N

M̄∏
`=1, 6̀=q

(γ` − γq)

which is obtained by forcing µ = γq in (108).

APPENDIX C
DERIVATION OF THE ASYMPTOTIC MEAN AND VARIANCES

OF THE GLRT AND FNT STATISTICS

In this appendix, we derive the asymptotic mean and vari-
ance for the two test statistics considered in this paper, namely
the GLRT and the FNT statistics. The main tools are given in
closed form expressions for the integrals in Lemma 3 and
Proposition 1.

A. Asymptotic mean and variance of the FNT statistic

Regarding the asymptotic mean, we can divide the integral
in (34) into two different parts, namely µM = (1 + ς)µ

(1)
M +

ςµ
(2)
M , where

µ
(1)
M =

1

2πj

∮
C−ω

1

N
tr

[ (
CMΘM (ω)− 2C2

MΘ2
M (ω)

)
�CMΘM (ω)

]
QM (ω) dω

+
1

2πj

∮
C−ω
ω

1

N
tr

[ (
CMΘ2

M (ω)�CM

)
×

× (ΘM (ω)�CM )

]
QM (ω) dω (117)

and

µ
(2)
M =

1

2πj

∮
C−ω

1
N tr

[
C2
MΘ3

M (ω)
]

1− 1
N tr

[
C2
MΘ2

M (ω)
]QM (ω) dω (118)
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where QM (ω) is defined in (22). To solve the first integral, we
can use the eigen-decomposition of CM together the partial
fraction expansion of the resulting polynomial quotients and
the integral results in Lemma 3, so that

µ
(1)
M =

1

N
tr
[
(CM �CM )

2
]
− 2

1

N
tr
[
C2
M

]
where we have used the fact that (IM �CM ) = IM .

In order to obtain a closed form expression for µ
(2)
M ,

we notice that the integrand is holomorphic except for the
eigenvalues γm, m = 1, . . . , M̄ , and the 2M̄ solutions to the
equation

1 =
1

N
tr
[
C2
MΘ2

M (ω)
]

(119)

which will be denoted as ϑm, m = 1, . . . , 2M̄ (we allow for
possible repetitions in case of multiplicities of order 2). It can
be trivially seen that all these values are inside the contour
Cω . Indeed, the region outside Cω belongs to the set of points
in the complex plane such that [35, eq. (49)]

ω ∈ C :
1

N

M̄∑
r=1

Kr
γ2
r

|γr − ω|2
< 1.

Therefore, it suffices to prove that the points ϑm, m =
1, . . . , 2M̄ are such that

1

N

M̄∑
r=1

Kr
γ2
r

|γr − ϑm|2
> 1.

This is a consequence of the Cauchy-Schwarz inequality,
because

1 =
1

N

M̄∑
r=1

Kr

(
γr

γr − ϑm

)2

≤ 1

N

M̄∑
r=1

Kr
γ2
r

|γr − ϑm|2

and the fact that equality only holds for z ∈ T , defined in
Lemma 2, whereas z ∈ C by assumption (see also Appendix
F). Therefore, the integral µ(2)

M can be evaluated by computing
the residues at all these points, leading to

µ
(2)
M

= −
M̄∑
m=1

γm
1− 1

N

M̄∑
r=1
r 6=m

Kr
γr

γr − γm

+
1

N
Kmγm


2

− 3
M̄∑
m=1

1

N
Kmγ

2
m

1− 1

N

M̄∑
r=1
r 6=m

Kr
γ2
r

(γr − γm)
2


+

1

2

2M̄∑
m=1

ϑ2
m

1− 1

N

M̄∑
r=1

Kr
γr

γr − ϑm

2

. (120)

The expression of this integral can be further simplified by
applying the following lemma.

Lemma 6: Let ϑm, m = 1, . . . , 2M̄ denote all the roots
of (119), with possible repetitions in case of higher order

multiplicities. Then,

1

2

2M̄∑
m=1

ϑm =
M̄∑
m=1

γm (121)

1

2

2M̄∑
m=1

ϑ2
m =

M̄∑
m=1

γ2
m +

1

N

M̄∑
r=1

Krγ
2
r . (122)

Furthermore, for any ` = 1, . . . , M̄ we have

1

2

2M̄∑
m=1

1

ϑm − γ`
=

M̄∑
m=1
m6=`

1

γm − γ`
(123)

1

2

2M̄∑
m=1

1

(ϑm − γ`)2 =
M̄∑
m=1
m6=`

1

(γm − γ`)2 (124)

+
N

K`γ2
`

1− 1

N

M̄∑
r=1
r 6=`

Kr
γ2
r

(γr − γ`)2

 .

Proof: Consider the following polynomial identity, ob-
tained by expressing (119) in polynomial form∏2M̄

m=1
(ϑm − ϑ) =

∏M̄

m=1
(γm − ϑ)

2

− 1

N

M̄∑
r=1

Krγ
2
r

∏M̄

m=1
m6=r

(γm − ϑ)
2
. (125)

The identity in (121) is obtained by identifying the coefficients
of the terms of order 2M̄ − 1 on both sides of the above
equation. On the other hand, the identification of the term of
order 2M̄ − 2 leads to (122). To obtain (123 ), simply take
first order derivatives on both sides of (125) and evaluate the
resulting polynomial identity at ϑ = γ`. Finally, taking second
order derivatives on both sides of (125) and evaluating the
result at ϑ = γ` we obtain –after some algebra– (124 ).

Using the identities in Lemma 6, we are able to write

1

2

2M̄∑
m=1

ϑ2
m

1− 1

N

M̄∑
k=1

Kk
γk

γk − ϑm

2

=

= 3
1

N

M̄∑
r=1

Krγ
2
r +

 1

N

M̄∑
r=1

Krγr

2

+
M̄∑
m=1

γ2
m

1− 1

N

M̄∑
k=1
k 6=m

Kk
γk

γk − γm


2

+ 3
1

N

M̄∑
k=1

Kkγ
2
k

1− 1

N

M̄∑
r=1
r 6=k

Kr
γ2
r

(γr − γk)
2


Inserting this into (120) and using the identity (obtained by
exploiting the symmetry with respect to the sum indexes)

2

M̄∑
m=1

M̄∑
r=1
r 6=m

KrKm
γ2
mγr

γm − γr
=

M̄∑
m=1

M̄∑
r=1
r 6=m

KrKmγmγr
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we finally obtain

µ
(2)
M =

1

N

M̄∑
r=1

Krγ
2
r

and therefore µM as given in (38).
Regarding the asymptotic variance, we may re-write (36 )

as

ΦM =
−1

4π2

∮
C+ω1

∮
C+ω2

QM (ω1)QM (ω2) σ̄2
M (ω1, ω2) dω1dω2

where σ̄2
M (ω1, ω2) is defined in (37) and where we have

slightly deformed the contours so that C−ω1
is enclosed by C−ω2

.
We can first compute the integral with respect to ω1, which
will be denoted as

IM (ω2) =
1

2πj

∮
C+ω2

QM (ω1) σ̄2
M (ω1, ω2) dω1.

Using the identities in Lemma 3 and the eigendecomposition
of CM one can easily establish that

1

2πj

∮
C+ω2

QM (ω1)
σ̄2
M (ω1, ω2)

1 + ς
dω1

= 2
1

N

M̄∑
m=1

Km
γ3
m

(γm − ω2)
2 − 2

1

N2

M̄∑
m=1

K2
m

γ3
mω2

(γm − ω2)
3

+ 2
1

N2

M̄∑
m=1

M̄∑
k=1
k 6=m

KmKk
γ3
mγk

γm − γk
1

(γm − ω2)
2

− 2
1

N
tr
[
C3
MΘ2

M (ω2)
]
− 2

cN
N

tr
[
C2
MΘ2

M (ω2)
]

+ 2
1

N
tr
[
CM

[
CM − dg

[
C2
M

]]
CM∆M (ω2)

]
.

So, finally integrating with respect to ω2 (again, with the help
of Lemma 3) and using the following two identities (obtained
by exploiting the symmetry with respect to the sum indexes)

1

N2

M̄∑
m=1

M̄∑
k=1
k 6=m

KmKk
γ3
mγk

γm − γk
=

=
cN
N

M̄∑
m=1

Kmγ
2
m −

1

N2

M̄∑
m=1

K2
mγ

3
m

and

2
1

N2

M̄∑
m=1

M̄∑
k=1
k 6=m

KmKk
γ4
mγk

γm − γk
= 2

cN
N

M̄∑
m=1

Kmγ
3
m

− 3
1

N2

M̄∑
m=1

K2
mγ

4
m +

 1

N

M̄∑
m=1

Kmγ
2
m

2

we obtain (39).

1) Boundedness of the mean and variance: Using Lemma 1
we see that, under (As2)− (As3), the mean µM is absolutely
bounded for all M , i.e.

|µM | ≤ (1 + ς) cM ‖(CM �CM )‖2

+ (2 + ς) cM ‖CM‖2 ≤ (3 + 2ς) cMθ
2 < +∞

where the last inequality follows from the fact that the diagonal
entries of CM are all one and the fact that ‖CM‖2 ≤ θ2, with
θ being defined in (12). Using the same reasoning, one can
show that

|ΦM | ≥ 2 (1 + ς)

(
1

N
tr
[
C2
M

])2

≥ 2 (1 + ς)
c2M
θ4

> 0

and also

|ΦM | ≤ 2 (1 + ς) c2M ‖CM‖4

+ 4 (1 + ς) cM ‖CM‖2
(
‖CM‖+

∥∥C2
M

∥∥)2 < +∞.

B. Asymptotic mean and variance of the GLRT statistic

As in the past subsection, we divide the mean into two
integrals, i.e. µM = (1 + ς)µ

(1)
M + ςµ

(2)
M , where here µ

(1)
M

and µ
(2)
M are as in (117 )-(118) but with QM (ω) replaced by

−LM (ω). The first integral can be computed by considering
the eigen-decomposition of CM and using the results in
Proposition 1. After some algebra, we arrive at

µ
(1)
M = −1

2
cM

− µ0
1

N
tr
[
CM (CM − µ0IM )

−1 �CM (CM − µ0IM )
−1
]

+
µ2

0

2

1

N
tr

[(
(CM − µ0IM )

−1 �CM

)
×

×
(

(CM − µ0IM )
−1 �CM

)]
.

Let us now deal with the second integral associated with the
asymptotic mean, i.e. µ(2)

M . To compute this integral, we will
follow the approach outlined in Appendix B. We can express
µ

(2)
M = J (1), where J (x) is the following function on [0, 1]:

J (x) =
1

2πj

∮
C+ω

1
N tr

[
C2
MΘ3

M (ω)
]

1− 1
N tr

[
C2
MΘ2

M (ω)
]LM (ω, x) dω

and where LM (ω, x) is defined in (105). The value of the
function at x = 0 can be easily computed using the classical
residue theorem. Indeed, observe that we can express

J (0) =
1

2πj

∮
C+ω

1
N tr

[
C2
MΘ3

M (ω)
]

1− 1
N tr

[
C2
MΘ2

M (ω)
] log (ω − µ0) dω

and since µ0 is always located outside C+
ω , log (ω − µ0)

is holomorphic inside the contour. The only poles of the
integrand are the eigenvalues γm,m = 1, . . . , M̄ , and the
2M̄ values that null out the denominator, which are denoted
by ϑm,m = 1, . . . , 2M̄ (counting multiplicities). It is shown
above that all these values are inside the integration contour.
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Therefore, computing the residues at these two sets of poles,
we can express J (0) as

J (0) =
M̄∑
m=1

log (γm − µ0)− 1

2

2M̄∑
m=1

log (ϑm − µ0) . (126)

On the other hand, according to Lemma 4 in Appendix B,
J (x) is a differentiable function of x on the unit interval, and
we can compute its derivative as

J ′(x) =
1

2πj

∮
C+ω

1
N tr

[
C2
MΘ3

M (ω)
]

1− 1
N tr

[
C2
MΘ2

M (ω)
] ∂LM (ω, x)

∂x
dω

where

∂LM (ω, x)

∂x
= −

1− x

N

M̄∑
m=1

K̃m
γm

γm − ω

−1

×

× 1

N

M̄∑
m=1

K̃m
γm

γm − ω
(127)

and where K̃m is defined in (106). The integral can be
solved using conventional residue calculus, taking into ac-
count that the only poles are the eigenvalues {γm}, the
values

{
ϑm,m = 1, . . . , 2M̄

}
considered above, and the

zeros of the denominator in (127), which are denoted
as
{
µm (x) ,m = 1, . . . , M̄

}
. Computing the corresponding

residues, we readily obtain

J ′(x) =
M̄

x
−

M̄∑
m=1

1
N

∑M̄
r=1Kr

γ2
r

(γr−µm(x))3
µ′m (x)

1− 1
N

∑M̄
r=1Kr

γ2
r

(γr−µm(x))2

+
1

2

2M̄∑
m=1

1
N

∑M̄
r=1 K̃r

γr
γr−ϑm

1− x
N

∑M̄
r=1 K̃r

γr
γr−ϑm

where µ′m (x) is the derivative of µm (x). Finding a primitive
of this function and imposing (126) we obtain

J (x) = M̄ log x

+
1

2

M̄∑
m=1

log

∣∣∣∣∣∣Km

N
γ2
m

1− 1

N

M̄∑
r=1

Kr
γ2
r

(γr − µm (x))
2

∣∣∣∣∣∣
− 1

2

2M̄∑
m=1

log

∣∣∣∣∣∣(ϑm − µ0)

1− x

N

M̄∑
r=1

K̃r
γr

γr − ϑm

∣∣∣∣∣∣
where we have used (111). The result can be obtained by
letting x → 1 in the above equation. The following lemma
will simplify the result.

Lemma 7: The following identities hold for any r =

1, . . . , M̄

2M̄∏
q=1

(ϑq − γr) = − 1

N
Krγ

2
r

M̄∏
k=1
k 6=r

(γk − γr)2 (128)

2M̄∏
q=1

(ϑq − µr) =
M̄∏
k=1

(γk − µr)2

1− 1

N

M̄∑
m=1

Km
γ2
m

(γm − µr)2


(129)

M̄∏
q=1

(µq − γr) = −Krγ
2
r

N

1

(γr − µ0)

M̄∏
k=1
k 6=r

(γk − γr) . (130)

On the other hand,

2M̄∏
q=1

(ϑq − µ0) =
M̄∏
k=1

(γk − µ0)
2

1− 1

N

M̄∑
m=1

Km
γ2
m

(γm − µ0)
2

 .
(131)

and for any r = 1, . . . , 2M̄ , we have

M̄∏
q=1

(µq − ϑr) =
M̄∏
k=1

(γk − ϑr)

1− 1

N

M̄∑
m=1

K̃mγm
(γm − ϑr)

 .
(132)

Proof: The fact that the quantities µq and ϑq are roots
of polynomial equations allows to identify their associated
polynomials as in (108) and (125) respectively. Equations
(128), (129) and (131) are directly obtained by evaluating
(125) at ϑ = γr, ϑ = µr and ϑ = µ0 respectively. On the
other hand, (130) and (132) are obtained by evaluating (108)
at µ = γr and µ = ϑr respectively.

Direct application of Lemma 7 allows us to write

µ
(2)
M = −1

2
log

1− 1

N

M̄∑
m=1

Km
γ2
m

(γm − µ0)
2

 .

Let us finally compute the asymptotic variance of the GLRT,
by direct evaluation of (36), namely

ΦM =
−1

4π2

∮
C+ω1

∮
C+ω2

LM (ω1)LM (ω2) σ̄2
M (ω1, ω2) dω1dω2

where σ̄2
M (ω1, ω2) is defined in (37) and where we have

slightly deformed the contours so that C+
ω1

is enclosed by C+
ω2

.
We will separate ΦM into three terms, i.e. ΦM = Φ

(1)
M +

Φ
(2)
M + Φ

(3)
M , corresponding to the three terms of σ̄2

M (ω1, ω2)
in (37). We will compute these three terms separately. A direct
application of Proposition 1 leads to

Φ
(2)
M ,

1 + ς

N

1

4π2

∮
C+ω1

∮
C+ω2

LM (ω1)LM (ω2)×

× tr
[
C2
MΘ2

M (ω1) Θ2
M (ω2)

]
dω1dω2

= −1 + ς

N
tr
[
C2
MΘ2

M (µ0)
]
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and

Φ
(3)
M ,

1 + ς

N

−1

4π2

∮
C+ω1

∮
C+ω2

LM (ω1)LM (ω2)×

× tr [CM∆M (ω1) CM∆M (ω2)] dω1dω2

=
1 + ς

N
tr
[
(CM (ΘM (µ0)− dg [CMΘM (µ0)]))

2
]
.

Therefore, it remains to compute

Φ
(1)
M , −1 + ς

4π2

∮
C+ω1

∮
C+ω2

LM (ω1)LM (ω2)

(ω1 − ω2)
2 dω1dω2.

Note, first of all, that by using the integration by parts formula
and classical residue calculus we can write

1

2πj

∮
C+ω1

LM (ω1)

(ω1 − ω2)
2 dω1 =

1

2πj

∮
C+ω1

1

(ω1 − ω2)

dLM (ω1)

dω1
dω1

= −
M̄∑
m=1

(
1

ω2 − µm
− 1

ω2 − γm

)
and therefore, using Proposition 1 together with the identity
in (108) evaluated at µ = µ0, we obtain

Φ
(1)
M = − (1 + ς) log

1− 1

N

M̄∑
m=1

Km
γ2
m

(γm − µ0)
2

 .

1) Boundedness of mean and variance: Let us first analyze
the obtained expressions in the undersampled regime. In this
situation cM < 1 and µ0 = 0, so that the asymptotic mean and
variances respectively take the form in (42 )-(43). It follows
directly from (7) that supM |µM | <∞. On the other hand, the
function x 7→ −x − log (1− x) is monotonically increasing
in [0, 1] from 0 to +∞. This, together with (7) implies that
ΦM is bounded away from zero for all M (note that the third
term is nonnegative). Since the spectral norm of CM is also
bounded, we reach the conclusion that ΦM is also bounded
for all M .

The oversampled regime is a bit more complex to analyze,
due to the presence of a strictly negative value µ0. This value
is the negative solution to

1

N

M̄∑
m=1

Km
γm

γm − µ0
= 1. (133)

Let γmin and γmax denote the minimum and maximum eigen-
values of CM . One can readily establish the fact that

cM − 1

cM
γmin < |µ0| < cM . (134)

Indeed, the inequality on the right hand side follows from
(133) and the fact that µ0 < 0 and trCM = M . The identity
on the left hand side is obtained by rewriting (133) as

cM − 1

cM
=

1

M

M̄∑
m=1

Km
|µ0|

γm + |µ0|

< |µ0|
1

M

M̄∑
m=1

Kmγ
−1
m ≤ |µ0|

γmin
.

As a consequence of (134) and (As2)− (As3), |µ0| is always
contained in a compact interval of the positive real axis. On
the other hand, we can also establish the bounds

c−1
M ≤

1

N
tr
[
C2
MΘ2

M (µ0)
]
<

γmaxcM
γmaxcM + γmin (cM − 1)

.

(135)
Indeed, the inequality on the left hand side follows from
the application of the Cauchy-Schwarz inequality to (133),
whereas the inequality on the right is obtained as

1

N
tr
[
C2
MΘ2

M (µ0)
]
≤

 1

N

M̄∑
m=1

Km
γm

γm − µ0

 γmax

γmax + |µ0|

=
γmax

γmax + |µ0|

together with the lower bound on |µ0| established in (134).
The bounds in (135) together with (As2)− (As3) imply that
this quantity is located in a compact interval inside (0, 1) for
all M . At this point, we have all the ingredients to bound the
asymptotic mean and variance of the GLRT statistic.

A trivial use of the triangular inequality and Lemma 1 in
(40) shows that

|µM | ≤ −
ς

2
log

(
1− 1

N
tr
[
C2
MΘ2

M (µ0)
])

+
1 + ς

2
cM+(1 + ς) cM

(
|µ0|2

2
+ 1

)
|µ0| ‖CM‖2 ‖ΘM (µ0)‖2

Since x 7→ − log (1− x) is monotonically increasing in [0, 1]
from 0 to +∞, we see from (135) that the first term is
bounded. The second and third terms are bounded thanks
to (As2)− (As3), (134) and the fact that ‖ΘM (µ0)‖ ≤
(γmin + |µ0|)−1.

Regarding the boundedness of the variance ΦM in (41),
using the fact that x 7→ −x − log (1− x) is monotonically
increasing in [0, 1] from 0 to +∞ and (135) we readily see
that infM ΦM > 0 and that

ΦM ≤ K+
1 + ς

N
tr
[
(CM (ΘM (µ0)− dg [CMΘM (µ0)]))

2
]

for some positive constant K independent of M . On the
other hand, using Lemma 1 together with (As2)− (As3) and
‖ΘM (µ0)‖ ≤ (γmin + |µ0|)−1 we see that the second term
above is also bounded for all M .

APPENDIX D
ASYMPTOTIC BEHAVIOR OF QUANTITIES BASED ON THE

RESOLVENT

In this appendix, we follow the convention in Section IV
and obviate the dependence on M in all quantities, so Q̂i =
Q̂M (zi), ωi = ωM (zi) and so on. We will denote by Ai and
Bi certain general deterministic matrices. The Ai’s will be
assumed to have bounded norm, whereas for the Bi we will
only require that they are Hermitian positive definite and have
bounded entries. We recall that the spectral norms of R, Q̄i,
R̂φ, Q̂iφ, etc. are bounded uniformly in z ∈ C. The following
lemma will be constantly used throughout this appendix.
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Lemma 8: Useful identities related to the Schur-Hadamart
product:

tr [A1 (A2 �A3)] = tr
[(

A1 �AT
2

)
A3

]
(136)(

A�BT
)
1 = vdg (AB)

(a1 � a2) (a3 � a4)
T

=
(
a1a

T
3 � a2a

T
4

)
vdg (A1)

T (
B1 �BT

2

)
vdg (A2) = tr [dg (A1) B1dg (A2) B2](

a1a
T
2 �B1

) (
a3a

T
4 �B2

)
= a1a

T
4 �

(
B1dg

(
a3a

T
2

)
B2

)
tr
[(

a1a
T
2 �B1

) (
a3a

T
4 �B2

)]
=

= (a1 � a4)
T (

B1 �BT
2

)
(a3 � a2) .

A. Proof of Proposition 3 (one resolvent)

Using the first identity in Lemma 8 and observing that
A2

(
A3 �BT

1

)
A1 has bounded spectral norm (see Lemma

1), we see that it is sufficient to prove the result for the case
A2 = A3 = IM and B1 = 11T . Let us first concentrate
on the expectation of (88). We fist note that we can express
the sample covariance matrix R̂ as in (59) where Xij is the
(i, j)th entry of X and where ei is the ith column of the
M ×M identity matrix. Using this, we can write

E
[
A1Q̂1R̂φ

]
=

1

N

M∑
i=1

N∑
j=1

E
[
XijA1Q̂1R

1/2eix
H
j R1/2φ

]
.

Each of the terms of the sum on the right hand side can be
developed using the integration by parts formula in (52) of
Lemma 2

E
[
A1Q̂1R̂φ

]
= E

[
A1Q̂1Rφ

]
+ z

1 + ς

N
E
[
A1Q̂1dg

(
Q̂1R

)
R̂φ
]

− E
[(

A1Q̂1R̂
) 1

N
tr
[
Q̂1R

]
φ

]
− ς 1

N
E
[
A1Q̂1RQ̂1R̂φ

]
+O

(
N−N

)
. (137)

Using the definition of β1 = β (z1) in (58) we can express the
above equation as(

1 +
1

N
tr
[
Q̄1R

])
E
[
A1Q̂1R̂φ

]
=

= E
[
A1Q̂1Rφ

]
+ z

1 + ς

N
E
[
A1Q̂1dg

(
Q̂1R

)
R̂φ
]

− 1

N
E
[(

A1Q̂1R̂φ
)
β1

]
−ς 1

N
E
[
A1Q̂1RQ̂1R̂φ

]
+O

(
N−N

)
.

Now, using the identity in (69) together with the lower bound
on (70) we see that we can write

E
[
z̃1(z1)

]
=

1

N
Etr

[
A1Q̂1R̂φ

]
=
z1

ω1

1

N
Etr

[
A1Q̂1Rφ

]
+
z2

1

ω1

1 + ς

N2
Etr

[
A1Q̂1dg

(
Q̂1R

)
R̂φ
]

− z1

ω1
E
[

1

N
tr
[
A1Q̂1R̂φ

] β1

N

]
− z1

ω1
ς

1

N2
Etr

[
A1Q̂1RQ̂1R̂φ

]
+O

(
N−N

)
.

Using Lemma 1, the second and fourth terms on the right hand
side of the above equation can be easily bounded by quantity
of type O

(
N−1

)
, so that

E
[
z̃1(z1)

]
=
z1

ω1

1

N
Etr

[
A1Q̂1Rφ

]
(138)

− z1

ω1
E
[

1

N
tr
[
A1Q̂1R̂φ

] β1

N

]
+O

(
N−1

)
.

Next, consider next the quantity E
[
A1Q̂1D̂

]
. Using the fact

that D̂ = dg
(
R̂
)

, inserting the expression of R̂ (59) and
applying again the integration by parts formula (52) in Lemma
2, we can similarly write

1

N
Etr

[
A1Q̂1D̂φ

]
=

1

N
Etr

[
A1Q̂1Dφ

]
+ z1

1 + ς

N2
Etr
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A1Q̂1

(
Q̂1 �RT � R̂

)
φ
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− 1

N2
Etr
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(
RQ̂1

)
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]

− ς 1

N2
Etr
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)
φ
]

+O
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N−N

)
.

Using here again Lemma 1 we readily see that
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N
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A1Q̂1D̂φ

]
=
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Etr
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]
+O

(
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)
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Hence, combining (139) and (138) we obtain
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N
Etr
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N

]
+O
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)
. (140)

Assume that we have proven that varz1(z1) = O
(
N−2

)
, so

that in particular var (β1/N) = O
(
N−2

)
. This will imply
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N
Etr
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(
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)]
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]
+O

(
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(141)

and the result will follow from the fact that E
[
N−1β1

]
=

O
(
N−1

)
. To see this last point, define Q̃1 = Q̃(z1), where

Q̃(z) =
(
R̂− zD

)−1

and note that, similarly to (49), we can establish the bound∥∥∥Q̃(z)
∥∥∥ ≤ ∥∥D−1

∥∥∥∥∥∥(C̃− zIM
)−1

∥∥∥∥ < K

dist (z, T )
(142)

for some positive K > 0 independent of N . On the other
hand, we can also establish the identity

Q̂1 − Q̃1 = z1Q̃1

(
D̂−D

)
Q̂1

and this implies that

E
[
β1
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]
=
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N
Etr
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R
(
Q̃1φ− Q̄1

)]
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N
Etr

[
Q̂1RQ̃1

(
D̂−D

)
φ
]
. (143)
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Now, from well known results of the sample covariance matrix,
the first term is well known to be expressible as O

(
N−1

)
[37].

As for the second term, we can use the fact that

D̂ = dgR̂ =
M∑
m=1

emeTmR̂emeTm

=
1

N

M∑
i=1

N∑
j=1

M∑
m=1

emeTmXijR
1/2eix

H
j R1/2emeTm

where in the second identity we have inserted the expansion of
R̂ in (59). Inserting the above equation into the second term
on the right hand side of (143) and applying the integration
by parts formula (52) in Lemma 2 together with the bounds
in Lemma 1 and (49)-(142) we can obtain
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N
Etr

[
Q̂1RQ̃1

(
D̂−D

)
φ
]

= O
(
N−1

)
.

From (143) we conclude that E [β1/N ] = O
(
N−1

)
as we

wanted to prove. Using this fact in (141) directly proves (89).
As for (90), it follows directly from the application of (89)
into (138), together with the fact that E

[
N−1β1

]
= O

(
N−1

)
and var (β1/N) = O

(
N−2

)
(note that this last fact is still to

be shown).
To conclude the prove of Proposition 3, it remains to

see that the variance of the two random quantities under
analysis are O

(
N−2

)
. In particular, this will prove the fact

var (β1/N) = O
(
N−2

)
, which was needed in the asymptotic

characterization of the above expectations. To see this, we will
directly apply the Poincaré-Nash inequality presented in (53)
of Proposition 2. In particular, we observe that we can write
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[
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]
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∂ 1
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]
∂X∗ij

∣∣∣∣∣∣
2

whereas an equivalent expression is valid for var [z1(z1)]. The
following lemma together with the bound in (49) allows us to
conclude that these variances are all O

(
N−2

)
.

Lemma 9: Let Υ = Υ (X,X∗, z1, z2) be an observation-
dependent random matrix such that supM ‖Υφ‖ < ∞ uni-
formly on (z1, z2) ∈ C × C. Then, we can write
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∣∣∣∣∣
2

= O
(
N−N

)
Furthermore, the same identities hold when ∂(·)/∂X∗ij is
replaced by ∂(·)/∂Xij in all the expressions above.

Proof: To prove the first identity, we simply use (67) in
combination with Jensen’s inequality and Lemma 1, so that
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]
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(
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)
.

Regarding the second identity, we use (68) also together with
Jensen’s inequality and Lemma 1, namely

M∑
i=1

N∑
j=1

E

∣∣∣∣∣ 1

N
tr

[
Υ
∂Q̂1

∂X∗ij
φ

]∣∣∣∣∣
2

≤

≤ 4
|z1|2

N2

1

N
Etr

[
Rdg

(
Q̂1ΥQ̂1

)
R̂dg

(
Q̂1ΥQ̂1

)H
φ

]
+ 4ς

|z1|2

N2

1

N
Etr

[
Rdg

(
Q̂1ΥQ̂1

)H
R̂dg

(
Q̂1ΥQ̂1

)
φ

]
+ 4

1

N2

1

N
Etr

[(
Q̂1ΥQ̂1

)
R̂
(
Q̂1ΥQ̂1

)H
Rφ
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Etr
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)
R
(
Q̂1ΥQ̂1

)H
R̂φ

]
= O

(
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.

Regarding the last identity in the statement of the lemma, we
know from Appendix E that

∂φM
∂X∗ij

=
1 + ς

N
eTi R1/2adj

(
φ
(
R̂
))

φ′
(
R̂
)

R1/2xj

where adj(A) is the adjugate of A. Therefore,

M∑
i=1

N∑
j=1

E

∣∣∣∣∣ ∂φ∂X∗ij
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2

=
(1 + ς)
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N
tr
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RR̂

(
φ′
(
R̂
)

adj
(
φ
(
R̂
)))2

]
and the quantity on the right hand side is shown to be
O
(
N−N

)
in Appendix E . The proofs for the case where

∂()/∂X∗ij is replaced by ∂()/∂Xij are completely equivalent
and are therefore omitted.

B. Proof of Proposition 4 (two resolvents)

We define the following matrices, which will be useful in
the algebraic development of this section:

ΠM = dgvec (IM ) =
M∑
r=1

(
ere

T
r ⊗ ere

T
r

)
(144)

Π̃M,N =
M∑
i=1

N∑
j=1

(
ẽje

T
i ⊗ eiẽ

T
j

)
(145)

where ei (respectively ẽj) denotes the ith (respectively jth)
column of the M ×M (respectively N ×N ) identity matrix,
and where dgvec(A) denotes a diagonal matrix with diagonal
entries equal to vec(A). We will also write Π̃M = Π̃M,M .
The above matrices have very interesting properties related to
the Kronecker and Hadamard products, that are summarized
in what follows.
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Remark 3: The M2 ×M2 matrix ΠM is idempotent and
can be decomposed as ΠM = WMWH

M , where the M2×M
matrix WM is defined as

WM =
[
e1e

T
1 , . . . , eMeTM

]T
.

Furthermore, it holds that [41] WH
M (A⊗B) WM =

(A�B) for any two M × M matrices A and B. The
MN ×MN permutation matrix Π̃M,N is sometimes referred
to as the Kronecker commutation matrix. Indeed, if A is
an N × M matrix and B is an M × N matrix, we have
Π̃T
M,N (A⊗B) Π̃M,N = B ⊗ A. It holds that WH

M Π̃M =

WH
M , so that ΠM Π̃M = ΠM .

The following two lemmas will be repeatedly used in this
subsection:

Lemma 10: Let A1, . . . ,A8, and B1, . . . ,B3 be all M×M
matrices. Then, the identities in (146 )-(147) at the top of next
page hold true, where ΠM is as defined in (144).

Proof: To prove the first result, we begin by us-
ing the fact that, for four matrices of appropriate di-
mensions A1. . .A4, one can write tr [A1A2A3A4] =

vec
(
AT

4

)T (
AT

3 ⊗A1

)
vec (A2), so that, using vec(a1a

T
2 ) =

a2 ⊗ a1 and noticing that a1 � a2 = dgvec (a1) a2 we obtain
the result. The second identity is proved similarly.

Lemma 11: Let A1, . . . ,A8, and B1, . . . ,B3 be matrices
of appropriate dimensions. Denote by ẽj the jth column vector
of the N ×N identity matrix (as opposed to ei, that denotes
the ith column vector of the M ×M identity matrix). Then,

M∑
i=1

N∑
j=1

tr
[
A1

(
A2eiẽ

T
j A3 �B1

)
A4

(
A5ẽje

T
i A6 �B2

)]
= tr

[(
A1 � (A2A6)

T
)

B1

(
A4 � (A5A3)

T
)

B2

]

and the identites in (148 )-(149)-(150)] at the top of next page
hold true, where Π̃M is the Kronecker commutation matrix
defined in (144).

Proof: Very similar to the proof of Lemma 10, and there-
fore omitted. The only interesting point is the simplification
that is applied to the first equation, which is a consequence
of the identities tr [A1dgvec (B1) A2dgvec (B2)] =
vec (B1)

T (
A2 �AT

1

)
vec (B2) and

vec (B1)
T

(A1 ⊗A2) vec (B2) = tr
[
AT

1 BT
1 A2B2

]
, valid

for matrices of appropriate dimensions.

Having introduced these analytical tools, let us focus on
the proof of Proposition 4. The fact that varz2(z1, z2) and
varz̃2(z1, z2) are both O

(
N−2

)
follows directly from the

Poincaré-Nash inequality in (53) of Proposition 2 together
with Lemma 9 presented above. Indeed, observe that both
∂z̃2(z1, z2)/∂Xij and ∂z̃2(z1, z2)/∂X∗ij can be expressed as
a sum of terms of the form given in the statement of Lemma

9, for example
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=
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N
Etr
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]
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] ∂φ
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+O
(
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)
.

where we have defined

E1 = A3

(
A4

(
A5Q̂2A6 �B2

)
A1 �BT

1

)
A2Q̂1 (151)

E2 = A6

(
A1

(
A2Q̂1R̂A3 �B1

)
A4 �BT

2

)
A5 (152)

and where we basically applied the property in (136) of
Lemma 8. Using Lemma 1 we can readily check that the
matrices multiplying the matrix derivatives inside the traces
have uniformly bounded norm. Therefore, application of
the Jensen’s inequality together with Lemma 9 shows that
varz̃2(z1, z2) = O

(
N−2

)
. The same reasoning applies to

varz2(z1, z2).
Let us next draw our attention to the expectation of the

two functions z2(z1, z2) and z̃2(z1, z2). Replacing R̂ in the
definition of z̃2(z1, z2) by its decomposition in (59) and
using the integration by parts formula (52) in Lemma 2
we obtain, applying several algebraic identities in Lemma 8,
E
[
z̃2(z1, z2)

]
as in (153 ) at the top of the next page, where

β1 is defined in (58), χ̃1 (z1, z2) is as in (154) at the top of
the next page, and where

χ̃2 (z1, z2) = − z1

ω1
E
[
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N
tr

[
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(
A2Q̂1R̂A3 �B1

)
×

×A4

(
A5Q̂2A6 �B2

)]
β1

]
.

Note here that matrices of the type dgvec (B1) have uniformly
bounded spectral norm thanks to the bounded entries of B1.
Therefore, applying the bounds in Lemma 1 together with
the fact that trΠM = trΠ̃M = M and Π̃M = Π̃T

M , we
obtain χ̃1 (z1, z2) = O

(
N−1

)
. On the other hand, the fact

that Eβ1 = O
(
N−1

)
and varβ1 = O

(
N−2

)
(Proposition

3) implies E |β1|2 = O
(
N−2

)
. Thus, the application of the

Cauchy-Schwarz directly shows that χ̃2 (z1, z2) = O
(
N−1

)
.

Going back to (153), we observe that the first term on
the right hand is similar to E [z2(z1, z2)]. In order to get
around this dependency, we analyze next a quantity very
similar to z̃2(z1, z2) but replacing R̂ by the diagonal D̂. Using
D̂ =dg

(
R̂
)

together with the fact that R̂ can be decomposed
as in (59) and applying the integration by parts formula (52)
in Lemma 2, we are able to write
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. (155)
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Now, combining (155) and (153 ), replacing A3 by Q̄1A3

and using Proposition 3 we obtain (95). Finally, using (95) in
(153) we get to (96). This completes the proof of Proposition
4.

C. Proof of Proposition 5

We begin by proving the identity in (97). Replacing R̂ in the
expression on the left hand side of (97) by its decomposition
in (59), applying the the integration by parts formula in
Proposition 2, and using Lemma 1, we obtain the result. The
same apporach allows to prove the identity in (98). The fact
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that the variances of the two quantities decay as O
(
N−2

)
is a direct consequence of the application of the Poincaré-
Nash inequality in Proposition 2, simply noticing that all
the derivatives involved can be expressed in the form of the
statement of Lemma 9.

D. Proof of Proposition 6 (3 resolvents)

The fact that var
[
ζ̂(A1,B1,B2)

]
= O

(
N−2

)
follows

from the Poincaré-Nash inequality in (53) of Proposition 2. By
taking derivatives of ζ̂(A1,B1,B2) with respect to the entries
Xij and X∗ij and applying Jensen’s inequality we end up with
a sum of terms that have the form in the statement of Lemma 9
above. Each of these terms can be written as O

(
N−2

)
, which

directly shows that var
[
ζ̂(A1,B1,B2)

]
= O

(
N−2

)
.

Next, let us analyze the expectation of ζ̂(A1,B1,B2). By
replacing the first appearance of the sample covariance matrix
R̂ in ζ̂(A1,B1,B2) with its decomposition (59) and applying
the the integration by parts formula in Proposition 2, we are
able to write
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φ
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)
(156)

where vdg(A) is column vector with the diagonal entries of
A and where the matrices U1 and U2 are defined as

U1 = R̂
(
A1Q̂1 �B1

)
R

U2 = R
(
Q̂2R̂Q̂2 �B2

)
R.

Observing the form of the different terms in (156), we come
to the conclusion that, apart from the first one, the rest can
be expressed as N−2E

[
vdg (G1)

T
Bvdg (G2)φ

]
, where G1

and G2 are random square matrices with bounded spectral
norm and where B is either B1 or B2. By definition, if B has
also bounded spectral norm, one can establish that
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T
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.

In this situation, we can disregard the corresponding terms in
(156). Conversely, if we fix B = 11T (an all-ones matrix), we

will have
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In all these situations, it turns out that N−1tr (G1) and
N−1tr (G2) are random quantities that can be described by
Propositions 3 and 4 proven above. Therefore, in all these
terms we can establish that E

[
N−2tr (G1) (tr (G2))

◦]
=

O
(
N−1

)
, and we can provide a deterministic equivalent

for both N−1Etr (G1) and N−1Etr (G2) up to an er-
ror of order O(N−1). In conclusion, we can easily es-
tablish the behavior all the terms in (156) of the form
N−2E

[
vdg (G1)

T
Bvdg (G2)φ

]
.

Regarding the first term on the right hand of (156), it will
be shown below that it can be expressed as in (157) at the top
of the next page. By Lemma 1, the first term on the right hand
side of (157) is always of order one. The next three terms can
be asymptotically neglected if at least one of the two matrices
B1 or B2 have bounded spectral norm. Indeed, observe that
all these terms can be written as N−2Etr [B1G1B2G2φ] for
some random square matrices G1, G2 that have bounded
spectral norm. Since both B1 and B2 are Hermitian positive
definite, it suffices that one of them (e.g. B1) has bounded
spectral norm to be able to write∣∣∣∣ 1

N2
tr [B1G1B2G2φ]

∣∣∣∣ ≤ ‖B1G1G2φ‖
1

N2
tr [B2]

= O
(
N−1

)
.

This means that, for the purposes of the proof of Proposition
6, we only need to consider the last terms in (157) in the case
where B1 = B2 = 11T .

We have now all the ingredients to finalize the proof
of Proposition 6. Assume first that both B1 and B2 have
bounded spectral norm. In this case, only the first terms on
the right hand side of (156) and (157) are of order one, which
directly proves (99). If B1 = 11T and B2 has bounded
spectral norm, we should also consider the first term in (157)
and the first two terms in (156 ). Inserting the first term
of (157) into (156) and applying Proposition 3 and (157)
with A1 = IM we directly obtain (100). Assume next that
B2 = 11T and B1 having bounded spectral norm. In this
case, we only need to consider the first term in (157), together
with the 1st, 3rd, 4th and 5th terms on the right hand side of
(156). We can deal with the non-vanishing terms of (156) as
follows. For the first term, we directly use (157). The third
and fifth terms can be described using Propositions 3 and 4.
Regarding the fourth term, using Proposition 3 we are able
to write it as −E

[
ζ̂(A1,B1,B2)

]
N−1tr

(
RQ̄2

)
plus some

error O
(
N−1

)
, where we notice that E

[
ζ̂(A1,B1,B2)

]
is

precisely the quantity that we are trying to evaluate, i.e. the left
hand side of (156). Moving this fourth term to the other side
of the equality and applying the identity in (69) we directly
obtain (101). Consider finally the case B1 = B2 = 11T . In
this situation, all the terms on the right hand side of both (157)
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Q̂2RQ̂1

)T)
B2

]
+O

(
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)
. (157)

and (156) need to be considered. The right hand side of (157)
can be fully characterized using the third identity in Lemma
8 together with Proposition 4. The result can be directly used
to replace the first term on the right hand side of (156). The
second term can be handled using Proposition 3 together with
the identity in (157) particularized to the case A1 = IM . As
for the other terms of (156 ), they can be expanded as in the
previous case, which leads directly to (102). This concludes
the proof of this proposition.

E. Proof of (157)

Consider the two random functions z3 = z3(z1, z2) and
z̃3 = z̃3(z1, z2) defined as

z3 =
1

N
tr
[
R
(
A1Q̂1 �B1

)
R
(
Q̂2A2Q̂2 �B2

)]
z̃3 =

1

N
tr
[
R
(
A1Q̂1 �B1

)
R
(
Q̂2R̂A2Q̂2 �B2

)]
.

where A1,A2 are assumed to have bounded spectral norm,
whereas B1,B2 are Hermitian positive semidefinite with
bounded entries. Observe that we can recover (157) by fixing
A2 = IM in Ez̃3.

Consider first the expectation E
[
z̃3(z1, z2)

]
. Replacing R̂

in the definition of z̃3(z1, z2) by its decomposition in (59)
and using the integration by parts formula in Proposition 2
together with Lemmas 10 and 11 and Proposition 4, we are
able to write the expression in (158) at the top of the next
page. Using the same techniques, one can also show that

1

N
Etr

[
R
(
A1Q̂1 �B1

)
R
(
Q̂2D̂A2Q̂2 �B2

)]
=

=
1

N
Etr

[
R
(
A1Q̂1 �B1

)
R
(
Q̂2DA2Q̂2 �B2

)]
+O

(
N−1

)
.

Combining this last equation with (158) and replacing A2 with
Q̄2A2 we obtain (159) on the next page. Observe that the
third term of the right hand side contains a slightly modified
version of z3(z1, z2) in which A2 has been replaced by R.
Hence, particularizing the above expression for A2 = R and
expanding the first two terms on the right hand side with
Proposition 4, we obtain (160) on the next page. Using this in
(158) after setting A2 equal to the identity matrix, we obtain
(157).

APPENDIX E
PROOF OF PROPOSITION 2

Using the same approach as in [39, Lemma 3.9], one can
see that φM is a C1 function in R2MN (RMN for real-valued
entries) with partial derivatives given by

∂φM
∂X∗ij

=
∂

∂X∗ij
det
(
φ
(
R̂M

))
=

=
1 + ς

N
eTi R

1/2
M adj

(
φ
(
R̂M

))
φ′
(
R̂M

)
R

1/2
M xj (161)

where adj(A) is the adjugate of A. Given the fact that φ and
φ′ are bounded, we see that the partial derivatives of φM are
polynomically bounded, because

M∑
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N∑
j=1

E
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2
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(
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))2∏M
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j 6=m

φ2
(
λ̂j

)]
.

Noting that φ′ is zero outside the blow-up S2ε defined in
Section III, we reach the conclusion that the right hand side
of the above equation is clearly bounded, and therefore so are
the partial derivatives of φM .

Let us now establish the identity in (54). The identity is
trivial for r = 1, so we can assume r > 1. Observe that we
can write

E [Ω (X,X∗, z)φrM ] = E [Ω (X,X∗, z)φM ]

+ E
[
Ω (X,X∗, z)φM

(
φr−1
M − 1

)]
so that, by the Cauchy-Schwarz inequality,∣∣E [Ω (X,X∗, z)φM

(
φr−1
M − 1

)]∣∣2
≤ E

[
|Ω (X,X∗, z)φM |2

]
E
[(

1− φr−1
M

)2]
.

Hence, it is sufficient to see that E
[
(1− φrM )

2
]

= O
(
N−`

)
for every ` ∈ N and r > 1. Let E denote the event that at least
one non-zero eigenvalue of the sample covariance matrix λ̂j
is outside the support S. Now, from the definition of φ we
have φM ≥ I {Ec}, where I {·} is the indicator function. This
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implies that φrM ≥ I (Ec) and (1− φrM )
2 ≤ I (E). Taking

expectations, we see that E
[(

1− φr−1
M

)2] ≤ P (E). However,
following [39, Proposition 3.1] we can establish that P (E) =
O
(
N−`

)
for every ` ∈ N, and this proves the result.

It remains to establish the last identity in Proposition 2.
Using the expression of the partial derivatives of φM given in
(161), together with the Cauchy-Schwarz inequality, we see
that

M∑
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However, noting that φ′
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≤ KI (E), where E is the event

that at least one eigenvalue is outside λ̂m the support and
where K is an upper bound on φ′. Hence,
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for some positive constant K independent of M , where we
used the fact that λ̂mφ′

(
λ̂m

)
is zero for λ̂m outside S2ε and

the fact that φ is bounded. Using the reasoning above, we see
that P (E) = O

(
N−N

)
, which concludes the proof.

APPENDIX F
BOUNDS ON ωM (z) AND ΓM (ωM (z1) , ωM (z2))

Lemma 12: Under (As1) − (As3), and for any z ∈
C\ (T ∪ {0}), T being defined in Lemma 2, |ωM (z)| is
bounded above and away from zero for all M . Furthermore,
these bounds hold uniformly for all z on C.

Proof: Assume that there exists a subsequence (Mn) for
which |ωMn (z)| → ∞. Using (15) we readily see that this
would imply∣∣∣∣1− 1

N
tr
[
RMn

(RMn
− ωMn

(z) DMn
)
−1
]∣∣∣∣→ 0 (162)

However, by Jensen’s inequality∣∣∣∣ 1

N
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)
−1
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γ2
m

|γm − ωMn
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→ 0

which contradicts (162). Next, assume that there exists a
subsequence (Mn) for which |ωMn

(z)| → 0. From (15) we
readily see that this would imply that∣∣∣∣ 1

N
tr
[
RMn (RMn − ωMn (z) DMn)

−1
]∣∣∣∣→∞.

However, since ωMn
(z) → 0 the above quantity will be

asymptotically upper bounded by lim sup cM <∞, leading to
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a contradiction. The above reasoning is valid if z is replaced
by a sequence of points zn on C, implying that the bound
holds uniformly on C.

Lemma 13: Under (As1) − (As3), for any z1, z2 ∈
C\ (T ∪ {0}), T being defined in Lemma 2, we have

sup
M
|ΓM (ωM (z1) , ωM (z2))| < 1 (163)

Furthermore, this bound holds uniformly over C × C.
Proof: A direct application of the Cauchy-Schwarz in-

equality leads to
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so it is sufficient to prove that
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< 1.

We first point out that it is known [35] that the above upper
bound is valid for each fixed M and z /∈ T ∪{0}. so we only
need to show that it holds uniformly in these two parameters.
First, it is shown in [35] that, for each M , there exists a xM ∈
T (which may depend on M ) such that

1 =
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By definition, we have

x− z = (ωM (xM )− ωM (z))×

×

1− 1
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 .

Now, since x belongs to T (which does not depend
on M ) and since C encloses T and not zero, we see
that infM infz∈C |xM − z| > 0, so that, in particular
infM infz∈C |ωM (xM )− ωM (z)| > 0 and

inf
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(165)
Using Cauchy-Schwarz and (164) we see that∣∣∣∣∣∣ 1
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for each M . However, (165) implies that the above inequality
is strict, and holds uniformly in M and z ∈ C, as we wanted
to prove.
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