Journal article Open Access

Preparation of Permanent Magnetic Resin Crosslinking by Diallyl Itaconate and Its Adsorptive and Anti-fouling Behaviors for Humic Acid Removal

Li, Qi-Meng; Wu, Ji; Hua, Ming; Zhang, Guang; Li, Wen-Tao; Shuang, Chen-Dong; Li, Ai-Min


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/1160417</identifier>
  <creators>
    <creator>
      <creatorName>Li, Qi-Meng</creatorName>
      <givenName>Qi-Meng</givenName>
      <familyName>Li</familyName>
      <affiliation>State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University</affiliation>
    </creator>
    <creator>
      <creatorName>Wu, Ji</creatorName>
      <givenName>Ji</givenName>
      <familyName>Wu</familyName>
      <affiliation>State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University</affiliation>
    </creator>
    <creator>
      <creatorName>Hua, Ming</creatorName>
      <givenName>Ming</givenName>
      <familyName>Hua</familyName>
      <affiliation>State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University</affiliation>
    </creator>
    <creator>
      <creatorName>Zhang, Guang</creatorName>
      <givenName>Guang</givenName>
      <familyName>Zhang</familyName>
      <affiliation>State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University</affiliation>
    </creator>
    <creator>
      <creatorName>Li, Wen-Tao</creatorName>
      <givenName>Wen-Tao</givenName>
      <familyName>Li</familyName>
      <affiliation>State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University</affiliation>
    </creator>
    <creator>
      <creatorName>Shuang, Chen-Dong</creatorName>
      <givenName>Chen-Dong</givenName>
      <familyName>Shuang</familyName>
      <affiliation>State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University</affiliation>
    </creator>
    <creator>
      <creatorName>Li, Ai-Min</creatorName>
      <givenName>Ai-Min</givenName>
      <familyName>Li</familyName>
      <affiliation>State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Preparation of Permanent Magnetic Resin Crosslinking by Diallyl Itaconate and Its Adsorptive and Anti-fouling Behaviors for Humic Acid Removal</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2017</publicationYear>
  <dates>
    <date dateType="Issued">2017-12-06</date>
  </dates>
  <resourceType resourceTypeGeneral="JournalArticle"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1160417</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1038/s41598-017-17360-8</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/njuwater</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;In this research, a series of permanent magnetic anion exchange resins (MAERs) were prepared by polymerizing glycidyl methacrylate monomer and crosslinking diallyl itaconate (DAI) and divinylbenzene. The properties and performances of these novel MAERs were systematically characterized and evaluated for humic acid (HA) adsorption by batch experiments. With the increase of DAI content from 0 to 15%, the moisture of MAERs was elevated from 50.23% to 68.53%, along with the adsorption capacity increasing from 2.57 to 3.14 mmol g&amp;minus;1. As the concentrations of co-existing cation (Ca2+ and Mg2+) increased, the adsorption amounts of HA dropped drastically at first and increased a little at high cation concentrations. Although ion exchange was the primary mechanism for HA adsorption, other physical interactions and electrostatic attraction between HA molecules and newly formed oxonium group also played significant roles for HA adsorption. The MAERs could be efficiently regenerated by a mixture of NaCl/NaOH solution (10%/1%), and notably, the MAER-3 with the highest DAI content displayed unapparent loss of adsorption capacity during twenty-one successive adsorption-desorption cycles. These results suggested a novel resin adsorbent for its excellent performances on adsorption, regeneration, and sedimentation in water treatment for natural organic matter removal.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/688320/">688320</awardNumber>
      <awardTitle>DevelopMent AnD application of integrated technological and management solutions FOR wasteWATER treatment and efficient reuse in agriculture tailored to the needs of Mediterranean African Countries</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
104
80
views
downloads
Views 104
Downloads 80
Data volume 240.5 MB
Unique views 89
Unique downloads 76

Share

Cite as