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Abstract—The limited availability and the lack of continuity
in the service of Global Positioning Satellite Systems (GNSS) in
harsh environments is a critical issue for Intelligent Transport
Systems (ITS) applications relying on the position. This work is
developed within the framework of vehicle-to-everything (V2X)
communication, with the aim to guarantee a continuous position
availability to all the agents belonging to the network when
GNSS is not available for a subset of them. The simultaneous
observation of shared satellites is exploited to estimate the Non-
Line-Of-Sight Inter-Agent Range within a real-time-connected
network of receivers. It is demonstrated the effectiveness of a
hybrid localization algorithm based on the the integration of
standard GNSS measurements and linearised IAR estimates.
The hybrid position estimation is solved through a self-adaptive
iterative algorithm to find the position of receivers experiencing
GNSS outages.

Index Terms—GNSS, ITS, Aided Positioning, Collaborative
Localization, IAR.

I. INTRODUCTION

The limited availability and the lack of continuity in the
GNSS services in harsh environment is a critical issues for
many positioning-related applications. GNSS services typi-
cally fail or lose reliability when the satellites are not in
Line-of-Sight (LOS), like in the presence of obstacles which
partially or completely obstruct the satellite view. This work
is focused on the non-continuity of satellite-based positioning
service within typical urban environment. Such a phenomenon
can be identified as critical aspects regarding to the rise of
autonomous driving systems [1] and smart traffic management.
During the last decades many solutions have been proposed
and successfully implemented like loose and tight integration
with generic Inertial Navigation System (INS) [2], [3], visual
odometer [4], Light Detection and Ranging (LIDAR) [5] and
Signal of Opportunity (SOP) exploitation [6]. Furthermore, the
increasing interest in Cooperative Positioning (CP) [7],[8],[9],
has shifted the research towards the implementation of smart
computation strategies based on network distributed capabil-
ities. Many advances have been also achieved about recent
generation of robots and vehicles equipped with mass market
GNSS receivers [10]. Furthermore, the recent open-access
availability of raw data from mobile devices (i.e. smartphones)
will soon allow to design collaborative algorithms just based
on such a class of receivers. As anticipated, the typical scenario
requires the integration of third-party devices which provide

additional measurements to mitigate service unavailability or
to improve the positioning performance. To this aim, several
ranging methods are available nowadays to determine range
between two objects with a centemeter-level accuracy [11].
However, all ranging technologies are based on application-
specific hardware and signal processing architectures for echo
detection (e.g. RF radar, ultrasound sensor, wideband or ultra-
wide band (UWB) ranging sensor) and they always require
LOS condition. This paper preliminarily investigates a method
for collaborative positioning with the aim to compensate for
temporary unavailable GNSS service through GNSS receivers
only. The proposed technique offers continuous position avail-
ability to all the agents belonging to a real-time connected
network within harsh environments, exploiting last available
position estimations. The Non-Line-Of-Sight (NLOS) Inter-
Agent Range (IAR), exclusively based on GNSS pseudorange
measurements and algorithmic data, is estimated and thus it
is integrated as relative navigation data within a hybridized
algorithm for positioning. Furthermore, IAR can be adopted
for several purposes outside this specific application which
will be further investigated in the future works.

II. PROBLEM FORMULATION

This section provides a detailed description of the proposed
method. After introducing its general overview, the estimation
of the IAR is presented from a geometrical point of view
together with a mathematical description. Such a definition
is tested in a realistic dynamic scenario to verify the effect of
the uncertainties on the measurements. Finally, it is integrated
within a hybrid algorithm for positioning which allows the
aided agents to compute a new estimate of their positions.

A. Rationale of the IAR concept

The effect of outages during GNSS tracking operations
typically returns an under-determined problem for the stan-
dard Position, Time and Velocity (PVT) algorithm. However,
when two communicating receivers are observing and tracking
the same satellite, two different correlated measurements are
available about the same landmark (i.e. GNSS satellite). Urban
and natural canyons or harsh environments in general show an
high variability of the visible set of GNSS satellites from the
point of view of a single receiver, while the joint multi-agent
sky visibility is intuitively more complete and stable. Such
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information is provided by the measured pseudoranges and the
geometrical orientation represented by unitary pointing vectors
computed iteratively within PVT algorithm [12]. By properly
combining them, the IAR can be obtained as an additional
piece of collaborative information. The IAR between each
couple of receivers belonging to the network requires a run-
time identification of all the simultaneously-visible satellites.
Actually, the true positions of the receivers do not need to
be explicitly shared and the LOS constraint of traditional
techniques is also bypassed. In case of In case of a scenario
with an insufficient number of visible satellites for the PVT, a
receiver can exploit such collaborative measurements in order
to estimate its own position. The effectiveness of the technique
has been verified by means of simulations by integrating the
IAR as relative navigation data together with the reduced
set of equations of standard PVT algorithms. Performance
analysis is performed in terms of positioning error, given a set
of communicating GNSS receivers in different sky visibility
conditions.

B. IAR estimation

In order to provide a clear formalization of the theory, the
following notation is used throughout the paper:
• k: time index
• Nk: set of receivers in the network
• Ak: subset of receivers out of GNSS service. a ∈ Ak
• Bk: subset of receivers under GNSS service. b ∈ Bk
• Jk: set of nominal visible satellites, j ∈ J
• Gk,a,Gk,b ⊆ Jk subsets of visible satellites for the a-th

and b-th receivers respectively
• Sk,a,b = Gk,a ∩ Gk,b: set of shared satellites which

are simultaneously visible by a-th and b-th receiver,
s ∈ Sk,a,b.

For sake of simplicity, the elementary geometry shown in
Figure 1 is considered. It depicts a static scenario with two
ground GNSS receivers, namely the aided agent, a, and the
aiding agent, b, and one shared satellite, s, is in LOS for
both. All the theoretical results can be extended to an arbitrary
number of receivers and shared satellites also in non-ideal
dynamic scenario as further discussed in the next sections.

Suppose that xa and xb are the last estimated positions of
a and b, they are defined as:

xi = [xi, yi, zi], i ∈ [a, b]

and let s be the shared satellite, whose ECEF position is:

xs = [xs, ys, zs], s ∈ S

The satellite-to-receiver range is defined as:

ρi,s = ‖xs − xi‖=
√

(xs − xi)2 + (ys − yi)2 + (zs − zi)2

Let q be the cardinality of Gk,i, Hi is defined, w.r.t. a
linearisation point x̂0, for the i-th receiver, as
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Fig. 1. Geometrical approach of GNSS-based range determination with
description of ambiguity circumference as position protection of aiding agent

Hi =


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h2,x h2,y h2,z

...
...

...
hq,z hq,y hq,z

 (1)

where each row describes the unitary vector defined as:

hi,s =
[
xi−x̂0

ρi,s

yi−ŷ0
ρi,s

zi−ẑ0
ρi,s

]
(2)

The angle α between the two unitary vectors w.r.t. the
shared-satellite s is computed as

α = acos

(
ha,s · hb,s
|ha,s| · |hb,s|

)
(3)

Finally, the IAR can be computed from a by solving the
correspondent unknown side of the triangle, as shown in
Figure 1, from the Carnot theorem as follows:

ra,b =
√
ρ2a,s + ρ2b,s − 2ρa,sρb,s · cos(α). (4)

It is important to notice that, given α and ρb,s, the position
of the aiding agent, xb, can be known to the aided agent a only
with ambiguity because the orientation information is actually
lost. It can be proofed the dot product shown in Eq. (3) is not
invertible since hi,s ∈ R3. The ambiguity circumference C,
shown in Figure 1, is the locus of points at distance ra,b from
the receiver b and ρb,s from the satellite s.

C. Heuristic analysis of uncertainties

In order to extend the IAR estimation to a realistic dy-
namic scenario, the effects of the non-ideal measurements are
analysed. Noisy positions and pseudoranges are considered,
whose errors are distributed according to zero-mean Gaussian
distributions with properly defined variances [12]. In such a
scenario, as depicted in Figure 2, the aided agent a does not
reach a sufficient number of satellites in view to compute
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Fig. 2. Aided (a) and aiding (b) agents at instant k and k−1 by considering
a dynamic scenario

the positioning solution at the instant k. It only holds the
PVT result obtained at the previous instant k − 1. As a basic
analysis, the error introduced by the outdated fix is considered
within the statistical distribution of the current position. At low
speed, the displacement between two instant is small enough
to make this assumption reasonable. The communication delay
and the error due to outdated position are hence intrinsically
considered within the σUERE of the aided agent. From a
heuristic analysis, the following assumptions hold:
• the errors on xa and xb cause small fluctuations of the

angle α due to the different order of magnitude between
the IARs and the pseudoranges;

• the error on the IAR due to the small variations of α
(i.e. σα) results negligible w.r.t. the error on the IAR due
to the pseudoranges-related errors (i.e. σUERE). Notice
that σUERE is the standard deviation nominally adopted
to model the pseudorange error coefficient [12];

• when positioning solutions are i.i.d. it is possible to
characterize the ratio between σUERE and σIAR as:

γ =
σUERE
σIAR

∼ 1√
2

The trend of γ versus σUERE is plotted in Figure 3.
As a consequence of this remarks by referring to the theoretical
analysis shown in Figure 4, the estimated IAR is defined as a
random variable as follows:

r̂a,b = ra,b + εr where εr ∼ N (0, γ · σUERE) (5)

D. Hybridized positioning algorithm

The proposed hybridized positioning algorithm is based
on the integration of standard GNSS pseudorange equations
together with the estimated IAR measurements. It is proposed
as a simple approach to validate the quality of the IAR

Fig. 3. γ versus σUERE varying agents positions error in [0-500] m

Fig. 4. Theoretical Probability Density Function of εr for i.i.d. positions
distributions between two cooperating agents

estimation. Following the approach shown in work [13], in this
paper, the interdependency between measurements is exploited
by means of the integration of linearised IARs. PVT algorithm
provides a positioning solution by iteratively solving the Least
Mean Square for the linearised system [12].

∆ρ = H∆x (6)

Our solution provides the integration of the available IARs
modifying (6) by means of matrix composition as: ∆ρa,j

∆ra,b

 =

 Ha

HIAR

×∆x (7)

where

∆ρa,j = ρ̂a,j − ρa,j ,∆ra,b = r̂a,b − ra,b
The Ha matrix is calculated by the receiver a, for each

instant, k, as shown in Eq. (1) whereas each row of matrix
HIAR is obtained through linearisation of IAR data as

~ =
[
xb−x̂0

rx0,b

yb−ŷ0
rx0,b

zb−ẑ0
rx0,b

]
(8)

where x0 must be the same as the linearisation point adopted
for the definition of Ha. Hereafter, the composed coefficients
matrix in Eq. (7) will be referred as Hi.

By gathering all possible IARs and the relative linearisation
coefficients from effective GNSS-referenced receivers in B, the
matrix Hi, is assumed to be composed by reliable information.
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Nevertheless, close aiding receivers can provide too strongly
correlated data such that Hi turns out to be an ill-conditioned
matrix. In this case the quality of the estimated position
may be very low. In fact, it is well known that linearised
set of equations are very sensitive to linear dependence of
matrix rows and to small perturbation of them [14]. The
hybrid PVT algorithm presented, leads indeed to a typical ill-
conditioned set of equations and it shows high instability of the
convergence of the solution. An iterative algorithm proposed
in [14] is adopted to enhance the convergence performance
avoiding the inversion of the ill-conditioned HH′ product
by means of a Self Adaptive Iterative Algorithm (SAIA) of
Weighted Least Mean Square. For sake of completeness, the
core steps of SAIA method are remarked here with a more fa-
miliar notation. As a general assumption, all the measurements
(i.e. pseudoranges, IARs) are affected by Gaussian distributed
errors as reasonably stated in the previous section.{

N = HT
i Hi + ΛI

W = H′iY + Λx(k − 1)

The perturbation parameter Λ is iteratively determined to
accelerate the convergence. It must satisfy the condition 0 ≤
Λ ≤ 1 : {

λ = min(|eig(HT
i Hi)|)

Λ = λ · 100.5|log10(λ)|+1

Z is calculated given the upper triangular matrix C obtained
from the Cholesky decomposition of Hi

CZ = W (9)

and then x is calculated solving the problem

CTx = Z (10)

It has to be remarked that the solution x is a differential
vector with respect to the preceding approximation point and
hence for each receiver x̂i = x0 − x.

The steps of the whole collaborative positioning algorithm
algorithm can be summarised by the following pseudo-code.

Algorithm 1 Collaborative algorithm
- the aided agent a sends to the aiding agent b its last ha,s
- b computes α applying (3)
- b sends back α and its current ρb,s to a
- a estimates ra,b through Eq. (4)
- a builds H by combining HIAR and Hi

- a computes its own position by solving Eq. (7)

III. SIMULATIONS AND RESULTS

In this section, some relevant results are reported to give
an overall picture of the described positioning solutions. The
method has been applied for a simulated urban environment
with different combination of parameters.

The satellite ECEF positions of the subset J are provided
each second by a constellation simulator, based on real RINEX

TABLE I
PARAMETER OF SIMULATED SCENARIO

|N | |J | dm σgeo σUERE f r

40 6 10 m 1000 m 1 m 20 300

Fig. 5. Trajectory plot of a generic moving receiver in non-continuous GNSS
service, red dots represent positions obtained from IAR-based solution while
green ones are standard fixes from LMS PVT algorithm.

files, w.r.t. a given position (e.g. Turin, Italy) and epoch. From
this reference location, the positions of the set of receivers
N is generated according to a Gaussian distribution centered
around the reference with a standard deviation σgeo. The
satellites visibility from the receivers is determined by random
transition of a binary matrix V (k), every tint seconds. Aiding
agents for each lost receiver are then evaluated through the
so called cross-visibility matrix, S. Thus collaborative NLOS
IAR is calculated whenever it is needed. Once the equations
are collected and processed, the H matrix is defined for each
receiver independently, thus iterating the SAIA algorithm for f
iterations within the PVT algorithm performed for r iterations.

Rectilinear trajectories with no altitude variation are fol-
lowed by the receivers belonging to the network. A realization
of the process is depicted in Figure 5. Such a specific case is
characterized by the parameters shown in Table I.

Standard PVT algorithm (green markers) and IAR-based
positions (red markers) are used depending on either full (¿= 4
satellites) or partial satellites visibility conditions, respectively.
This actually demonstrates the good coherence and integra-
bility of IAR with pseudorange measurements for outage
mitigation purposes. The availability of the positioning service
is increased along the path and the hybridized solutions are
indeed well-distributed along the path although they show a
higher variance of the error w.r.t. the GNSS estimates. Figure 5
clearly shows an effect, referred as back-drag, that can appear
in case of implementation of IAR measurements. This is due to
the integration of the outdated fix which makes the solution
strongly conservative about the past of the motion showing
backward located positions w.r.t. the true one. Predictions will
be inspected as algorithm input in future works.

By looking at the position errors of a generic receiver
versus time, as shown in Figure 6, it is possible to see how
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Fig. 6. Position errors of a generic simulated receiver in non-continuous
GNSS availability, dots on x-axis represents nominally outage of service.

Fig. 7. Wide-range snapshot of GNSS-based estimates (green markers) and
hybrid IAR-based estimates(red markers) vs. true positions of the receivers
belonging to the network (black crosses).

the presence of contiguous outages causes a progressively
higher bias along the trajectory. This behaviour is due to
the increasing uncertainty in case of perpetuated IAR-based
positioning. It can be remarked that the error on the final
solution of the hybridized algorithm is limited and close to the
error of the current true position with respect to the outdated
fix. In Figure 7, a snapshot of the positions of all the receivers
at a generic time instant is given. As shown, the estimation
algorithm based on IAR (red circle) returns good convergence
of positioning solution for all the lost receivers.

IV. CONCLUSION AND FUTURE RESEARCH

The H(k−1) matrix is used to determine the IAR whenever
a receiver belonging to the network experiences an outage. The
hybrid solution successfully works in case of single failure
guaranteeing the continuity of positioning service. Differently,
the memory introduced in the process, in case of multiple
faults, makes this solution intrinsically biased due to the
error propagation in successive estimations and, despite to
the fact that it guarantees a solution during epochs in which
the standalone GNSS positioning would fail, it may lead to
unacceptable results for a specific application. The results are
indeed interesting by looking at the whole motion observation.
The standard deviation σ(x̂) of the error on each axis, in

the case of few sequential outages, is typically bounded by
the motion-induced error due to use of an outdated position.
Future works will inspect more complex models for the motion
of the receivers and a deeper theoretical analysis of the
context-related variables which affects the reliability of IAR
measurements (number of collaborating agents, number of
available satellites, different motion speeds, etc.). Since the
algorithm addresses dynamic frameworks, solutions based on
Kalman Filters are being analysed to validate the strategy
as a reliable option for integrating other additional ranging
subsystems.
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