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Abstract—Spectral imaging is useful in a wide range of ap-
plications for non-invasive detection and classification. However,
the massive amount of involved data increases its processing and
storing costs. In contrast, compressive spectral imaging (CSI)
establishes that the three-dimensional data cube can be recovered
from a small set of projections, that are generally captured in
2-dimensional detectors. Furthermore, the single-pixel camera
(SPC) has been also employed for spectral imaging. Specifically,
the SPC captures the spatial and spectral information in a single
measurement. CSI reconstructions are traditionally obtained
by solving a minimization problem using iterative algorithms.
However, the computational load of these algorithms is high due
to the dimensionality of the involved sensing matrices. In this
paper, a multi-resolution (MR) reconstruction model is proposed
such that the complexity of the inverse problem is reduced. In
particular, this model uses the spectral correlation to group pixels
with similar spectral characteristics. Simulation results show that
the MR model improves the reconstruction PSNR in up to 9dB
with respect to the traditional methods. In addition, the proposed
approach is 79% faster, using only 25% of the measurements.

I. INTRODUCTION

Most imaging applications in areas such as astrophysics,
environmental remote sensing, microscopy, surveillance, and
biomedical image processing, often require high resolution
images to discriminate between specific details of the scene.
High-resolution sensors, however, increase the cost of the
acquisition system. In particular, spectral imagery (SI), which
consists on three-dimensional data sets with two spatial di-
mensions (x,y), and one dimension in the spectral domain
A, is traditionally employed in remote sensing for ground-
cover classification, mineral exploration, and agricultural as-
sessment [1]; and biomedical imaging for noninvasive disease
diagnosis and surgical guidance [2]. The cost of acquiring SI
using traditional scanning methods such as whiskbroom or
pushbroom spectrometers depends on the desired resolution
inasmuch as it determines the amount of scanned areas. In
addition, SI captured with scanning-based systems involves
massive amounts of data, which increases the cost of storing
or processing. On the other hand, compressed sensing (CS)
principles have been recently applied to SI acquisition [3],
[4], this field has been called compressive spectral imaging
(CSI). More specifically, CSI establishes that it is possible to
retrieve a spectral image from a small number of samples,
under the assumption that it has a sparse representation in
some basis W. In particular, a spectral image f € RM NI
has a dispersion level S, if it can be represented as a linear
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combination of S vectors on any basis W, such that f = W@
with S < M NL. Thus, instead of acquiring M N L samples,
CS captures K < M NL random projections of the scene,
where K is not necessarily equal to the sparsity level S.
The sensing process can be represented in matrix form as
g = Hf, where H is the transfer matrix of the system[5].
Because the number of measurements is considerably less
than the number of voxels, the inverse problem given by
f= H’lg, is ill conditioned, leading to an infinite number of
solutions. Therefore, reconstruction of the signal f is obtained
using optimization algorithms that take advantage of the sparse
representation of f in a transformation basis W. Specifically,
these algorithms obtain an approximation of 6 and use the
transformation f = W0 to get the desired spectral signal. The
optimization problem is given by

f = W{argming|[H¥O — g||3 + 7(|0]/}, (1)

where 7 is a regularization parameter.

In recent years, different optical architectures have been de-
veloped to implement the compressive sampling theory for the
acquisition of spectral images, such as the spatial-spectral en-
coded compressive HS imager (SSCSI)[6], the coded aperture
snapshot spectral imager (CASSI)[7], the dual-coded hyper-
spectral imager (DCSI)[8], the prism-mask multispectral video
imaging system (PMVIS)[9], and the single pixel camera
(SPC)[10]. Each of these architectures presents its own ad-
vantages and drawbacks for different applications. However,
most of them require 2D sensors. In contrast, SPC uses a
single pixel detector, which provides reliable spectral images
with lower cost hardware, since the single pixel detector can be
a photodiode circuit or a point spectrometer (Whisk-broom).
As shown in Figure 1(a), this architecture is composed of the
array lens Ly and Lo, a coded aperture T which is a block-
unblock pattern implementable with a DMD, and a detector
[11].

Traditional CSI reconstructions are obtained by solving Eq.
1 using iterative algorithms to retrieve a full-resolution ap-
proximation of the scene. In particular, each iteration of these
algorithms calculates matrix products and inverses, however,
the dimensionality of these matrices increases the computa-
tional load of the reconstruction process. In this paper, a MR
reconstruction model is proposed such that the complexity
of the inverse problem is reduced by employing superpixels,
i.e. blocks of pixels. In particular, the blocks of pixels are
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Fig. 1. (a) Single pixel camera (SPC) sensing and (b) Proposed multi-resolution (MR) reconstruction process.

obtained by exploiting the spectral correlation of pixels with
similar spectral characteristics. This model is based on the
concept of multiresolution image (MRI) which assumes that
blocks of pixels with similar characteristics can be grouped
such that the number of elements in the full image is reduced
[12], [13], [14]. This approach has been previously applied
for grayscale images with satisfactory results [13], [14], but
usually the resolution for specific areas is selected by the user
and does not take into account the actual characteristics of the
image. It is worth noting that the MR approach has not been
to date extended to CSI, the closest approximation to spectral
imaging has been presented in [15], where the authors recover
MR spectral images at the expense of high computational cost.

II. SPC SENSING AND MULTI-RESOLUTION
RECONSTRUCTION

The single pixel architecture illustrated in Figure 1(a)
employs a coded aperture to modulate the input spectral
information, then, a single point spectrometer (Whiskbroom)
is used as a detector such that all the incoming modulated
source is captured in a single measurement. Let a spectral
image be F € RM*NXL \where M and N are the spatial
dimensions and L is the number of spectral bands. The sensing
problem of a single spectral band f; can be modeled as
gF = hif;, where [ = 1,2,...,L, hy is a row vector that
contains all the physical phenomena behind the architecture
including the coded aperture, and %k indexes the captured
snapshot. for each shot k. In general, the sensing model for all
shots captured for the [-th band can be written as g; = Hfj,
each of these employing a different coded aperture pattern,
g =[g) ,glK’l]T, H is the sensing matrix whose rows
are the vectors hy. Furthermore, the sensing model for all the
spectral bands and K shots is given by

g = Hf, 2
T T . . .
where g = [(go) R (gL_l) L , H is the sensing matrix
illustrated in Fig. 2 and can be obtained as a block diagonal
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matrix
H 0 0
N 0 H 0
H=|. . . 3)
0 0 H
The compression ratio in this model is given by v = ﬁ,

where the number of rows of H is equal to M N L. Notice that
v €[0,1].

Band 1 Band 2 Band 3

Band 0
T

i

NM 2NM 3NM

Fig. 2. SPC sensing matrix H,with N = 64, v=0.25and L = 4.

Full-resolution reconstructions from SPC measurements are
obtained as in Eq. 1. To date, several optimization algorithms
have been developed to solve the inverse CSI problem. In
general, these algorithms work under the sparsity assumption
of the underlying signal and their computational load is high
due to the high dimensionality of the sensing matrices. In
contrast, this work presents a reconstruction scheme that takes
advantage of the spectral similarities of the pixels in the image.
Furthermore, the scenes under analysis exhibit highly corre-
lated areas in which several pixels can be grouped into blocks
without losing information or inducing considerable errors. In
particular, the proposed reconstruction scheme assumes that
pixels of the same class have the same spectrum, such that
they can be grouped into a superpixel, which reduces the
amount of unknowns to recover in the inverse problem. Thus,
the complexity of the resulting reconstruction problem is less
than that of the full-resolution. Figure 1(b) summarizes the
proposed reconstruction scheme, in which a low resolution
(LR) reconstruction of the scene if first obtained; then, a high
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resolution version of the image is attained by interpolating
the LR reconstruction which is then used as the input for a
CS reconstruction algorithm in which the sensing matrix H is
modified by a MR matrix D that accounts for the generation
of the superpixels in the image. More specifically, in the MR
reconstruction scheme, the sensing matrix H is composed by a
Hadamard matrix W in conjunction with a decimation matrix
D as in [16], and is given by

H=WD + Z, “4)

where Z is a binary random matrix that helps to solve the
inverse problem induced by the decimation matrix. The multi-
shot sensing matrix, is then obtained as in Eq. 3. A fast
LR reconstruction of f can be obtained by applying the
inverse Hadamard transformation to the measurement set g.
Mathematically, the LR reconstruction can be obtained as
¢ = WTg, where W is a block diagonal matrix, whose
entries are W. Using the LR version of the scene ¢, a fast
high-resolution (HR) approximation of f can be obtained
by applying an upsampling operation to ¢ without using an
iterative algorithm. This HR approximation is later used to
determine the superpixels of the image with respect to their
spectra. Mathematically, the fast HR approximation of the
scene is obtained as f = U(, where U is the employed
upsampling operator, such as a bilinear interpolation matrix.
The correlation between the spectral signatures of the pixels
in f determines the guidelines to group several pixels with
similar spectral signatures into a superpixel, such that an esti-
mation of the (MR) downsampling matrix D can be obtained.
Specifically, the matrix D is a diagonal matrix whose entries
correspond to the downsampling matrix for each shot A, then
D is expressed as

A 0 --- 0

A 0O A --- 0

D=|. . - 5
O 0 --- A

The procedure to generate the MR matrix is described in detail
in Section III. Using D, H and the measurements g, the HR
reconstruction problem can be rewritten as

. " AT
& = W{argming|[HD W0 —g||5+70][7},  (6)

where 7 is a regularization parameter and ¥ is the sparse
representation basis. It is important to notice that £ contains
the values of the voxels in the HR image, and D indicates the
spatial positions in which the elements of £ should be placed.
Thus, the reconstructed data cube f is given by f = ]jTﬁ.
Table I presents a summary of the proposed reconstruction
methodology.

III. DESIGN OF MULTI-RESOLUTION MATRIX (A)

The construction of the MR matrix is based on the anal-
ysis of the spectral signatures in the fast HR approxima-
tion of the scene as presented in Algorithm 1. The in-
puts for the algorithm are the fast HR approximation of
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TABLE I
SUMMARY OF THE SENSING AND MR RECONSTRUCTION PROCESS

Single shot sensing H-WD+2Z
matrix -
H 0o --- 0
R 0 H -~ 0
Multi-shot sensing matrix H=| . .
0 O H
W o0 0
Multi-shot Hadamard W= o w 0
matrix B :
0 0 w
Sensing process g = Hf
Fast low-resolution AT
reconstruction (=W'g
Up-sampling with a B
bilinear interpolation (fast f=U¢
HR approximation)
Design of _ ¢
Multi-resolution matrix A = MRE(f, M, N, L
A O 0
Multi-shot D= 0o A 0
Multi-resolution matrix -
0 o --- A
Reconstruction process ¢ = \Il{argmin9||Hf)T‘I’9 —gll3+
algorithm 716113}
Generation of a MR cube f= 15T§

the scene f which is the only known information of the
scene; the set of spatial coordinates of the image Q =
{(z,y) |z=1,...,M —1,y=1,...,N — 1}; the spatial di-
mensions of the scene; the error tolerance ¢; and the parameter
for the block size 7. In particular, the proposed method
compares the spectral signature of each spatial point with
respect to the average spectrum p of a block of pixels. The
block size varies within the set 7 = {27,277! ... 1}. To
start, the algorithm chooses a point (7, j) from €, and creates
a block of size 2" x 2" and calculates the mean squared error
(MSE) between the actual block B and a hypothetical block
in which all points have spectrum p. If the maximum MSE is
smaller than the fixed threshold o then, the spatial points in the
block are grouped into a single superpixel, thus the indicator
vector I' represents the pixels in the block and is given by

P 1 if max(MSE(P(m),F(i)j)))<0 e
(0.9) 0 otherwise ’

where P is a replication of p whose size matches the size
of B. In this case, the vector I' is added as a new row of
the MR matrix A. Furthermore, given that each point (z,y)
can only belong to one superpixel, the set of pixels available
for future blocks is given by € = @ — B. On the other
hand, if the maximum MSE is greater than the threshold, the
algorithm randomly chooses another point (z, y) and performs
the operations previously described. To keep track of the
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analyzed points, an additional set Qis defined, such that after
each evaluation, the pixel (z,y) is removed from the set by the
operation ! = Q — (z,y). Then, before analyzing the MSE,
the algorithm verifies whether the block can be constructed
with the available pixels, maEhematically, the new block should
satisfy B = {(4,7)[(i,7) € }. Once all the pixels have been
evaluated for the block size 27, i.e. | @ |= 0, the algorithm
moves to the next block size 27~1, and runs the operations
described above. The algorithm stops when all the pixels have
been assigned to a block, i.e. | € |= 0. The size of the
resulting matrix A varies according to the data under analysis,
however its number of rows is less than the original amount
of unknowns to recover as shown in Eq.6.

Algorithm 1 Algorithm to determine multiresolution matrix

A
1: procedure MR(f,Q, L, 0, 1)
2: T« 27271 ... 1]
3: while |2| > 0 do
4: Q — QN
5: while [2| > 0 do
6: i+ [,z +1,...,2+T(2)]
T ]<_[yay+177y,‘+T(Z)]
8: B = (i,7)[(4,7) € ©
9: P < E{F(z,y)}
10: Q—Q—(z,9)
11: if mam(MSE(P(w), F(%J))) < o then
12: I‘(z,j) +—1
13: (A), + vee(T)
14: 2+~ Q-8B
15: 0=0-B
16: else
17: Q=0 (z,9)
18: end if
19: end while
20: 24241
21: end while
22: return A

23: end procedure

IV. SIMULATIONS AND RESULTS

Several simulations were realized to test the proposed
method. Three different data cubes with 128 x 128 pixels
of spatial resolution and L = 8 spectral bands were used
in the experiments. Figs 3(a), 4(a), 5(a) illustrate and RGB
mapping of the scenes. The number of desired bands was
varied from 2 to 8, and the reconstructions were obtained
using a compression ratio v = 0.25, and the proposed
method in section II compared with traditional full-resolution
reconstructions from Eq. 1 which are shown in Figs. 3(b), 4(b)
and 5(b). The comparisons are expressed in terms of PSNR and
complexity/time of the reconstructions (seconds). Figs 3(d),
4(d) and 5(d) illustrate the MR pixel block distribution for
each of the databases. It can be noticed that the largest blocks
are 8 x 8(n = 3), and the smallest blocks n = 0 correspond
to the zones with more spectral variation of the scenes. The
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RGB mapping of the recovered images using the proposed
method are shown in Figs. 3(c), 4(c) and 5(c). Furthermore, the
individual recovered spectral bands are illustrated in Figs. 3(e),
4(e) and 5(e). Figure 6 shows the comparison of the attained

Fig. 3. Simulation results data cube 1 (a) RGB mapping original scene; (b)
RGB mapping of the full-resolution reconstruction; (¢) RGB mapping of the
proposed reconstruction; (d) Blocks of pixels from proposed approach; (e)
Recovered spectral bands.

Fig. 4. Simulation results data cube 2 (a) RGB mapping original scene; (b)
RGB mapping of the full-resolution reconstruction; (¢) RGB mapping of the
proposed reconstruction; (d) Blocks of pixels from proposed approach; (e)
Recovered spectral bands.

PSNR as a function of the number of recovered spectral bands
for the three data cubes. The results are compared with the
traditional full-resolution reconstruction. It can be noticed that
the proposed approach improves the reconstruction quality
in up to 9dB. In addition, Fig. 7 illustrates a comparison
of the complexity of the reconstruction measured as the
reconstruction time with respect to the number of recovered
bands. It is worth noting that the measured time includes the
generation of the MR matrix A, however this operation does
not significantly increase the total time. These results show that
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Fig. 5. Simulation results data cube 3 (a) RGB mapping original scene; (b)
RGB mapping of the full-resolution reconstruction; (¢) RGB mapping of the
proposed reconstruction; (d) Blocks of pixels from proposed approach; (e)
Recovered spectral bands.

the proposed method is up to 79% faster than the traditional
reconstruction.
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Fig. 6. Comparison the PSNR of the reconstruction between proposed method
compared with the traditional full-resolution reconstructions, is shown for
(a)Target 1 (b)Target 2 and (c)Target 3.

V. CONCLUSION

A multi-resolution (MR) reconstruction scheme for spectral
imaging recovery has been proposed. This approach exploits
the spectral similarities within the image and reduces the
complexity of the inverse problem. Simulation results show
that the proposed method improves the reconstruction PSNR in
up to 9dB and is 79% faster than the traditional reconstruction
method, using a compression ratio of 25%.
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