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Abstract—Wearable devices that acquire photoplethysmo-
graphic (PPG) signals are becoming increasingly popular to
monitor the heart rate during physical exercise. However, high
accuracy and low computational complexity are conflicting re-
quirements. We propose a method that provides highly accurate
heart rate estimates at a very low computational cost in or-
der to be implementable on wearables. To achieve the lowest
possible complexity, only basic signal processing operations, i.e.,
correlation-based fundamental frequency estimation and spectral
combination, harmonic noise damping and frequency domain
tracking, are used. The proposed approach outperforms state-
of-the-art methods on current benchmark data considerably in
terms of computation time, while achieving a similar accuracy.

Index Terms—Photoplethysmography (PPG), Heart Rate Esti-
mation, Motion Artifacts (MA)

I. INTRODUCTION

On the emerging market of wearable devices for healthcare
and fitness, it is becoming common practice to monitor the
user’s heart rate with the help of photoplethysmography (PPG).
In contrast to traditional ECG belts, PPG only requires low-
cost hardware and can easily be recorded with wrist worn
devices. However, PPG-based heart rate estimation is chal-
lenging, especially during intense physical exercise. Motion
artifacts (MA) can strongly deteriorate the quality of a PPG
signal, e.g., the arm movements while running can cause
strong periodic components that overlap with the desired
heartbeat-related PPG component. Moreover, environmental
light leaking into the gap between the photo diode and the
skin causes additional MA.

In recent years, numerous techniques have been proposed to
estimate the heart rate from PPG signals [1]-[14]. However,
some of these methods [1]-[6] do not consider strong motion
and are, thus, not suited for heart rate estimation during
physical exercise.
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In 2015, Zhang et al. [8] proposed a framework for this
use-case, which consists of signal decomposiTion for denois-
ing, sparse signal RecOnstructlon for high-resolution spec-
trum estimation, and spectral peaK trAcking with verification
(TROIKA), and, at the same time, provided a data set that
is commonly used as a performance benchmark and also
served as training data set for the IEEE Signal Processing
Cup 2015 [15], [16]. However, TROIKA is very computation-
ally demanding and not suitable for wearable devices. The
subsequent publication by Zhang [10] is based on joint sparse
spectrum reconstruction (JOSS). It jointly estimates the spectra
of the PPG and acceleration signals, utilizing the multiple
measurement vector model in sparse signal recovery. JOSS
achieves highly accurate results but is still computationally
complex [12]. Both TROIKA and JOSS rely on large matrices
which cannot be stored on embedded systems with constrained
internal memory.

In this work, we present a new method that provides highly
accurate heart rate estimates during physical exercise using
extremely low computational cost and memory requirements.
To achieve this, only fundamental signal processing functions
that are easily implementable on hardware and allow for
very rapid execution, are used. Numerical results based on
current benchmark data are provided, which show that our
proposed approach outperforms state-of-the-art methods on
current benchmark data sets considerably in terms of com-
putation time (e.g., about 80 times faster than JOSS), while
achieving similar accuracy.

The remainder of the paper is organized as follows: First,
Section 2 introduces the signal model, while the method is
presented in Section 3. The description of the benchmark
data set and the real-data results, as well as computational
complexity are given in Section 4. Finally, Section 5 concludes
the paper.

II. SYSTEM MODEL

As in [9], we use the following measurement model:

p(n) = s(n) +m(n) + v(n) (1)
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Here, p(n) is the measured PPG signal, s(n) is the unob-
servable noise-free PPG signal, m(n) are the motion induced
artifacts, and v(n) ~ AN(0,02) represents the sensor and
amplifier noise.

III. PROPOSED METHOD

As the aim of the paper is to present a fast algorithm, we
keep the computational complexity as low as possible. We
apply correlation functions to enhance periodic components
and suppress wideband noise that is caused by motion-induced
artifacts or sensor and amplifier noise. The results in this
paper are based on using two PPG and three acceleration
channels. However, the method is also applicable to other
configurations. The summation of the squared spectra further
enhances common components between the PPG channels and
suppresses remaining artifacts and noise. Motion artifacts are
reduced by taking into account the estimated periodic compo-
nents from the acceleration spectra. The heart rate estimation
picks the maximal value in a weighted spectrum using a linear
prediction. All steps are detailed in the subsequent sections.

A. Preprocessing

First, PPG and acceleration signals (fs = 125 Hz) are
bandpass filtered with a finite impulse response (FIR) filter
(fe1 = 0.5 Hz, f.o = 6 Hz), and downsampled to 25 Hz.

In contrast to our preceding method [9], this method does
not require the use of adaptive normalized least mean squares
(NLMS) filters, which greatly reduces the computational com-
plexity.

B. Correlation Based Fundamental Frequency Indicating
Function

To enhance periodic components, we next calculate the
sample correlation functions of the two measured PPG signals

pi(n), i=1,2,

N-1
1 ..
Tpp; (K) = N1 Z pi(n+ K)p;(n), i,j=1,2
n=—N-+1
2
and normalize them
norm Tij(li)_uij ..
TR () = L= 1,2, 3)
Opip;
Here,
1 2N—1
N’Pi;ﬂj = m ; rpi,pj(y)a i;j = 1;2 (4)
and
1 2N -1 )
Opip; = IN — 1 l;l (rpipj (v) - :upipj) v hJ=1,2
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Collecting the elements of (3) into vectors r°™ (n) results

piPj
in three unique vectors r™ normn () and r™™ (n).

Pip1 (n)’ rplpz P2p2
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C. Fourier Transformation

Finally, the fast Fourier transform (FFT) is applied to all
three unique vectors. Each spectrum with 2048 bins and a reso-
lution of 0.37 beats per minutes (BPM) is again normalized by
subtracting its mean and dividing by the standard deviation,
resulting in estimates of the spectra of the noise-free PPG
signals S11(n, f), Si2(n, f) and Sas(n, f), respectively.

Next, we compute

Ssum(nvf) :g%l(nuf)+S%2(n7f)+*§§2(nvf)7 (6)

to further enhance common components between the channels
and suppress uncorrelated background noise in the spectrum.

D. Harmonic Noise Damping

The resulting spectrum from (6) is multiplied element-wise
with a Gaussian bandstop filter defined by the window function

2 _l<f—f’q<n>>2
wacc(n,f)zl—Ze PN Twinaee ) f =

q=1

whose parameters fi(n) and fo(n) = fi(n)/2 are estimated
by tracking the frequencies fq(n) that are associated with
the maximal energy values of the accelerometer spectrum.
Here, F' is the number of frequency bins and the value of
Owinace = 0.31 Hz, which is about 19 BPM, is determined
empirically.

E. Heart Rate Tracking

The heart rate is recursively obtained by evaluating

7 N _;<f—f{’{§d<n>>2
fur(n) = argmax S*™(n, f) - e 2 Towinmr ®
f

where oyingr = 4 BPM is the physiologically motivated width
of the Gaussian window and f2(n) is the predicted heart
rate, which is the estimate of a linear least squares fit of the
preceding three heart rate estimates

i’ (n) = a(n) +2- B(n) )
with . .
Bn) = fur(n —1) ; fur(n —3) (10)
and 1 5
an) = gzz:;fHR(n—i). (11

If the frequency of the maximal energy in the accelerometer
spectrum overlaps with the predicted heart rate, the heart rate
is tracked either based on S’ll(n, f) or 5‘22(71, f). The choice
is made based on the maximal energy in the frequency bins of
the last 5 estimated heart rates fHR(n —4) withi=1,...,5.
Finally, to smooth the heart rate estimate sequence, we restrict
the tracker to maximally jump £4 BPM in relation to the last
estimate.
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S1 S2 S3 S 4 S5 S6 S7 S8 S9 S10 S11 S12 | Mean AAE + STD
TROIKA [8]* 2.87 275 191 225 169 316 172 183 158 4.00 1.96 333 242 + 2.47 BPM
JOSS [10]* 133 175 147 148 069 132 071 056 049 381 0.78 1.04 1.28 + 2.61 BPM
AF-Combine [9] 252 142 222 118 1.08 149 132 09 074 391 1.73 1.34 1.66 + 0.88 BPM
Proposed Approach 145 129 058 152 078 08 1.02 065 039 507 079 146 1.32 + 1.24 BPM
* The results for this method are obtained from [10].
TABLE I

AVERAGE ABSOLUTE ERROR (AAE) OVER ALL 12 DATA SETS FROM THE TRAINING DATA [8] IN BPM.

Total Duration (12 Data Sets)

TROIKA [8]"

3.5 hours

JOSS [1077

300 seconds

AF-Combine [9]

51.46 seconds

Proposed Approach

3.73 seconds

T The computation times for this method are obtained from [12] using the M-FOCUSS algorithm [17], which is by far the most complex operation in TROIKA
and JOSS. Our own implementation of JOSS using [18] achieved similar computation times.

TABLE I
TOTAL COMPUTATION TIMES FOR THE TRAINING DATA [8].
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Fig. 1. Spectrogram of the best result with superimposed true heart rate in
red and estimate of the proposed method in white.
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Fig. 2. Spectrogram of a medium result with superimposed true heart rate in
red and estimate of the proposed method in white.

IV. REAL DATA RESULTS
For evaluation, we consider the training data set recorded

by Zhang et al. [8] for the IEEE SP Cup 2015. Each data set
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Fig. 3. Spectrogram of the worst result with superimposed true heart rate in
red and estimate of the proposed method in white.

includes a two-channel PPG signal, a three-axis acceleration
signal, and a reference heart rate for evaluation, obtained
from a simultaneously recorded electrocardiogram (ECG). The
sampling rate of all signals is fs = 125 Hz. The PPG signals
were recorded from the subject’s wrist using a pulse oximeter
with green LEDs (wavelength: 515 nm). The acceleration
signals were recorded at the same position. We adapt the
framework of the IEEE SP Cup [16] and estimate the heart
rate every two seconds based on overlapping time windows of
8 seconds length.

The performance of the proposed method is measured by
the average absolute error (AEE), which is defined as

L
1
AAE = I l_zl [BPMeg((1) — BPMye (1),

(12)

where L is the total number of estimates, BPM(!) denotes
the true BPM value in the Ith time window, and BPM (1) is
the corresponding estimate in BPM.
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The results are compared with our preceding algorithm ”AF-
Combine” [9], TROIKA [8], and JOSS [10]. The best, the
worst and a medium estimation result of the proposed method
is exemplarily shown in Fig. 1-3, respectively, superimposed
on the spectrogram $*™(n, f) that is weighted by the Gaus-
sian bandstop filter. The white line shows the estimate of the
proposed method, while the dashed red line shows the true
heart rate (HR) that is provided by a reliable, simultaneously
recorded ECG. In Fig. 2, motion artifacts are visible as
wide-band noise in the spectrum and in Fig. 3, the motion
artifacts are present as harmonic disturbances at about 80
BPM, which can be contributed to harmonic movements that
are performed while running. The associated first harmonic
lies at approximately 160 BPM and overlaps with the heart
rate.

As described in Section III, for the time instances, when the
maximal energy in the accelerometer spectrum overlaps with
the predicted heart rate, the heart rate tracking is performed
either on Sy1(n, f) or Sya(n, f). This effect can be seen for
example in Fig. 1, when the spectral track is interrupted at
around 160 seconds and 280 seconds.

Table I provides the AAE for the training data set. The
last column contains the overall mean and standard deviation
for each method. The proposed approach achieves an average
AAE of 1.32 + 1.24 BPM (mean + standard deviation).
While all methods achieve a comparable and sufficiently high
accuracy for the considered use-case, they strongly differ in
their computational complexity.

The total duration of the computation times is shown in
Table II. As reported in [12], the heart rate estimation of
the training set takes several hours for TROIKA [8] and
300 seconds for JOSS [10], which is of a similar magnitude
(402 seconds) as for our own implementation of JOSS. Our
preceding method [9] needs about 51 seconds. In comparison,
the proposed approach spends only 3.73 seconds to run the
complete training set, which is roughly 80 times faster than
JOSS and almost 14 times faster than our previously proposed
algorithm. The computation time for the proposed approach
was evaluated on a 2.8 GHz Intel® Core i5-760 CPU
with 8 GB RAM and Matlab R2016a. Please note that the
most complex operation is the FFT, which is an O(N log N)
operation. For each time window of 8 seconds, the FFT is
executed six times to transform the two time-domain PPG
signals, their cross-correlation as well as three accelerometer
signals into the frequency domain. Those six vectors with 2048
bins are the biggest variables in the storage.

V. CONCLUSION

A very computationally efficient algorithm based on PPG
and acceleration signals has been proposed to accurately
monitor a subject’s heart rate in real-time during physical

consumption as low as possible. Despite its low computational
complexity and memory requirements, the proposed method is
comparable in terms of accuracy to computationally intensive
state-of-the-art methods on a benchmark data set.
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