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Abstract—We consider the task of automatically predicting
spirometry readings from cough and wheeze audio signals for
asthma severity monitoring. Spirometry is a pulmonary function
test used to measure forced expiratory volume in one second
(FEV1) and forced vital capacity (FVC) when a subject exhales
in the spirometry sensor after taking a deep breath. FEV1%,
FVC% and their ratio are typically used to determine the asthma
severity. Accurate prediction of these spirometry readings from
cough and wheeze could help patients to non-invasively monitor
their asthma severity in the absence of spirometry. We use
statistical spectrum description (SSD) as the cue from cough and
wheeze signal to predict the spirometry readings using support
vector regression (SVR). We perform experiments with cough and
wheeze recordings from 16 healthy persons and 12 patients. We
find that the coughs are better predictor of spirometry readings
compared to the wheeze signal. FEV1%, FVC% and their ratio
are predicted with root mean squared error of 11.06%, 10.3%
and 0.08 respectively. We also perform a three class asthma
severity level classification with predicted FEV1% and obtain
an accuracy of 77.77%.

I. INTRODUCTION

Asthma is a chronic inflammatory disease of the airways
caused by the combination of genetic and environmental
factors like air pollution or allergens [15]. World Health Or-
ganization (WHO) estimates that 235 million people currently
suffer from asthma, with 250k annual deaths attributed to the
disease [19]. Asthma severity is clinically categorized into
four classes – intermittent, mild persistent, moderate persistent,
severe persistent – according to the frequency of symptoms,
forced expiratory volume in one second (FEV1), forced vital
capacity (FVC) and FEV1 to FVC ratio (FEV1 FVC). The
symptoms and the threshold values for different levels of
severity are given in [7], [26]. The severe persistent asthma is
life threatening.

Spirometry is the most common of the pulmonary function
tests and specifically measures the FEV1 and FVC. There are
reference values of the FEV1 (FEVref ) and FVC (FV Cref )
for each patient depending on his/her age, gender, height and
weight. The FEV1% and FVC% denote the ratio (in percent-
age) between the value measured by the spirometry and the
corresponding reference value. FEV1%, FVC% and the ratio

of FEV1 & FEV (FEV1 FVC) are indicators of the severity of
asthma. For spirometry readings, the patients are asked to take
a deep breath to the best of their capacity, and then exhale into
the sensor as fast and long as possible, preferably at least for 6
seconds. It is believed to be the single best test for asthma [18].
But the maneuver primarily depends on patient’s cooperation
and effort, causing the readings to vary depending on how
meticulously a patient does the inhalation and exhalation in the
suggested manner. So it becomes difficult to obtain spirometry
readings for children and elderly people [10]. It is also often
required for the asthma patients to monitor their asthma level
at home [25]. However, the spirometry is expensive and not
a portable device. Thus, the peak flow meter (PFM) [1] is
often used as a substitute which measures how well the lungs
push out air. But it is known that a PFM is less accurate than
spirometry [8]. A PFM can only measure the air flow through
the major airways of patient’s lungs. These major airways are
those from where the strength of exhalation comes. However,
minor airways in one’s lungs could be affected by asthma in a
manner similar to the major airways resulting in minor airways
to swell causing typical asthma symptoms. But a PFM fails
to measure the strength of those airways. Thus, it would be
useful to have a cheap and portable device that could measure
FEV1 and FVC as good as spirometry.

The cough is produced by closing the glottis till the pressure
builds up below the glottis followed by a sudden release of
pressure once the glottis opens. Wheeze, on the other hand,
is a continuous flow of air from lungs to the mouth. For both
cough and wheeze, the air volume that flows from lungs to the
mouth is modulated by the obstruction in the airways caused
by asthma. So we hypothesize that the severity of asthma could
be predicted from the wheeze/cough sound. Cough and wheeze
could be easily recorded by a microphone, often available in
the smart phones. Thus, predicting spirometry values from
cough and wheeze would be non-invasive. It would also be
comfortable unlike using spirometry irrespective of the age
and medical condition of the patient.

There are a number of works in the literature for classifying
a subject into asthmatic or healthy person based on his/her
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Fig. 1. Time domain signal and spectrogram of sample cough and wheeze
signal from a randomly chosen subject.

cough and wheeze. For example, Wisniewski et al. used tonal
index to detect pulmonary wheezes for asthma monitoring
[24]. Similarly, Holmes et al. automatic identification of in-
halations in asthma inhaler recordings [14]. Akram et al [3]
proposed a segmentation scheme of respiratory sounds for the
detection of wheezes for asthma detection. Study carried out
by Bentur et al [4] shows how wheeze monitoring provides
quantative information that correlates well with asthma activity
of children. On the other hand, several algorithms have been
proposed to identify coughs [13], [16] for asthma detection.
Batra et al. [2] explored features such as harmonic to noise
ratio (HNR), jitter and shimmer in the sustained vowel phona-
tion for identifying asthma patients. There are several works
that classify asthma using respiratory sound based on pitch
[6], [20], dominant frequency range [11], [12] and duration
of the breath [22]. To the best of our knowledge, there is no
work reported on predicting spirometry readings from cough
and wheeze for asthma level monitoring.

We, in this work, have explored the task of predicting
spirometry readings based on statistical spectrum descriptor
(SSD) [9] from cough and wheeze signal. We have used sup-
port vector regression [23] to predict the spirometry readings
from the SSDs of the wheeze and cough sound. Experiments
are performed in a leave-one-subject-out setup with cough
and wheeze recordings from 16 healthy subjects and 12
asthmatic patients. We find that, on average, FEV1%, FVC%
and FEV1 FVC are predicted with a root mean squared error
of 11.6%, 10.3%, and 0.08 respectively. We also perform a
three-class asthma severity classification using the predicted
FEV1% and obtain an accuracy of 77.77%, which turns out to
be ∼16% (absolute) higher than the baseline scheme. We also
perform a feature selection to investigate the subset of features
that provides maximal information of severity of asthma. We
begin with the description of the dataset.

II. DATASET

The recordings used in this study were obtained from a
total 28 subjects comprising 16 healthy subjects (10 male
and 6 female) and 12 asthmatic patients (7 male and 5
female) recruited from St. John’s National Academy of Health
Sciences, Bangalore. The healthy subjects were middle aged
with an age range of 19-37 years with an average age of
26 years. The age range of the patients was 19-75 years

Fig. 2. The block diagram of the proposed approach for predicting spirometry
readings.

with an average age of 41 years. On doctor’s suggestion, the
patients go through the standard spirometry [17] to measure
the FEV1 and FVC. Prior approval for recording was obtained
from hospital ethics committee and consent for recording was
taken from each subject. Following spirometry test, subjects
are asked to cough and wheeze for at least five times, which
were recorded at a sampling rate of 48kHz and 16-bit using
the ZOOM H6 handy recorder. Sufficient break was given
between the spirometry test and the cough/wheeze recording
to ensure that the patient is comfortable during recording. The
start and end of each wheeze/cough are manually marked.
Among 12 patients, six patients have the recording both before
and after the bronchodilator. The range of FEV1%, FVC%
and FEV1 FVC of all subjects were 28-100%, 35-100% and
62-100% with their average values of 70%, 68%, and 87%
respectively. Sample wheeze and cough signals along with
their spectrograms are shown in the Fig. 1. The inhalation
and exhalation in wheeze sound can be clearly seen. The
spectrogram also shows the time-varying spectral content.
The time-frequency characteristics of cough sound appears
to be different from that of wheeze sound. From the entire
recording, on average, we obtain 6(±5) wheeze and 6(±5)
cough recordings per subject.

III. PROPOSED APPROACH FOR PREDICTING SPIROMETRY
READINGS FROM COUGH AND WHEEZE

The block diagram of the proposed approach is shown
in Fig. 2. For a given recording from a subject, there are
multiple instances of the cough/wheeze sounds and one set
of the spirometry readings. Using a regression model on the
acoustic features of cough/wheeze, we predict the spirometry
reading for each instance of cough/wheeze and combine the
predicted values in the end to get the final estimate of the
spirometry reading for the subject. Thresholds are applied
on the spirometry reading, FEV1%, to perform the asthma
severity classification. The each block of Fig. 2 are explained
in details below.
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Fig. 3. Illustration of the selected features for predicting different spirometry readings using cough and wheeze. In each subplot, x-axis denotes the indices of
the test subject in leave-one-subject-out setup. Y-axis denotes the SSD index. A white box for a particular SSD and test subject indicates that the corresponding
SSD is selected for the respective test subject.

A. Feature extraction

We explore the widely used feature in speech, namely,
Mel-frequency cepstral coefficients (MFCCs). MFCC is ex-
tracted by first extracting logarithm of energies in sub-bands
placed uniformly on the mel-scale and then computing the
discrete cosine transform (DCT). The DCT provides a low-
dimensional representation compared to the number of sub-
bands. Mel-scale reflects the nonlinear frequency sensitivity
of the human auditory system [9]. We extract MFCC for short
overlapping segments resulting in a sequence of MFCCs for
each cough/wheeze recording. For regression, the sequence
of MFCCs are converted to a single vector by computing an
average value for each element in the MFCC vectors in the
sequence to obtain statistical spectrum descriptor (SSD) of a
cough/wheeze instance. In addition to taking average, we have
experimented with other statistics of the MFCCs including
variance, median, however, there was no improvement in the
performance compared to that using SSDs.

B. Regression model

Support vector regression (SVR) is used as the regression
model. We have explored nonlinear ε-SVR to approximate
the function between the SSDs and FEV1, FEV%, FVC,
FVC% and FEV1 FVC (target variables). SVR [23] is an
application of SVM to find the mapping function between
input and output. We use ε-SVR, which tries to find the optimal
regression hyperplane so that most of the training samples
lie within an ε-margin around this hyperplane. Non-linear
regression is done in an efficient way by applying the Kernel
function, i.e., to replace the inner product in the solution by a
non-linear kernel function. We used the radial basis function
as kernel for regression and used LIBSVM [5] toolkit for SVR
implementation.

C. Final prediction and asthma severity classification

The SVR is trained with the SSDs and spirometry readings
from the training set. We obtain the predicted values of the
spirometry readings for each cough/wheeze instance in the test
set for a subject. The final spirometry reading is computed

by taking the median of these predicted values across all
instances. Among the spirometry readings, FEV1% is used
to perform asthma severity level by using the predefined
thresholds [26] for asthma severity levels.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

Each cough/wheeze realization is windowed with 25ms win-
dow and 10ms shift to compute 13-dimensional MFCC, which
is computed by using sub-bands placed uniformly on mel-
scale in the range of 100Hz-3700Hz. Every coefficient in the
MFCC vector sequence is averaged across all frames in each
cough/wheeze sound to obtain a 13-dimensional SSD vector
as the acoustic representation. The target spirometry readings
(FEV1, FEV1%, FVC, FVC%, FEV1 FVC%) for different
cough/wheeze sound from the same subject are identical since
only one set of spirometry reading is available for a subject.

For SVR, a leave-one-subject-out cross validation is used to
examine the robustness of the predictive model to the variation
due to speaker characteristics. The hyper parameters ε, C and
σ are optimized by grid search to maximize the performance
on the training data. The value of ε, C and σ lie within a range
of 10−6 − 0.1, 0.01− 1000 and 10−4 − 1 respectively.

Evaluation Metrics: We use the root mean squared error
(RMSE) between the ground truth spirometry readings and
the predicted one. Across all test cases in the leave-one-
subject-out setup. We also report standard deviation (SD) of
the squared errors which captures the variation of the squared
errors around the RMSE. Suppose there are L test cases,
where xl, 1 ≤ l ≤ L and x̂l, 1 ≤ l ≤ L denote the
original and predicted spirometry values. Then the RMSE and

SD are defined as follows: RMSE =
√

1
L

∑L
l=1(xl − x̂l)2

and SD =
√

1
L

∑L
l=1((xl − x̂l)2 −RMSE2)2. The units of

RMSE and SD for FEV1 and FVC are liters, while those
FEV1%, FVC% and FEV1 FVC are unitless. We also use
the classification accuracy as a metric for the asthma severity
classification. For asthma severity classification, we consider
three classes by using two thresholds of 0.8 and 0.6 on
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Fig. 4. RMSE for predicting different spirometry values from wheeze and cough using top K SSDs from the ranked list of SSD.

the FEV1% [26]. Although there are four clinically defined
asthma severity levels – intermittent (FEV 1% > 0.8), mild
persistent (FEV 1% > 0.8), moderate persistent (0.6 <
FEV 1% < 0.8), severe persistent (FEV 1% < 0.6) – the
differences between intermittent and mild persistent lie in the
symptoms only [26]. Thus we merge these two levels to result
in three asthma severity classes. For predicting spirometry
readings we consider a vanilla baseline where the average
of the all readings in the training set is used. Similarly, for
asthma severity classification, we classify each test case with
‘moderate persistent’asthma since the maximum number data
belongs to this class.

Feature selection: We investigate the predictive power of
each coefficient of the SSD. For this purpose, we have used
a forward feature selection algorithm following the work by
Abhay et al. [21]. For the feature selection, a three fold cross-
validation is performed within the training set where only one
subject’s data is used as the test set in the leave-one-subject-
out setup. The features, thus selected, are used for the unseen
test data. The forward feature selection is performed separately
for each target variables, i.e., FEV1, FEV1%, FVC, FVC%,
FEV1 FVC.

TABLE I
THE RMSE OF EACH PREDICTED SPIROMETRY READING BEFORE AND

AFTER FEATURE SELECTION USING WHEEZE AND COUGH SIGNALS. THE
VALUE IN THE BRACKETS INDICATES SD. THE LEAST RMSE IN EACH

SPIROMETRY READING (EACH COLUMN) IS SHOWN IN BOLD.

spirometry FEV1 FEV1% FVC FVC% FEV FVC
readings

baseline 0.77 15.24 0.81 13.80 0.08
(.69) (4.2) (.98) (3.4) (1.2)

w/o feature selection wheeze 0.70 13 0.77 13 0.09
(0.63) (3.10) (0.98) (3.25) (0.01)

cough 0.48 12.1 0.57 12.4 0.08
(0.24) (1.77) (0.46) (2.57) (0.01)

w feature selection wheeze 0.66 12 0.74 12 0.09
(0.74) (4.41) (1.04) (2.86) (0.02)

cough 0.48 11.6 0.57 10.3 0.08
(0.31) (1.64) (0.51) (1.99) (0.01)

B. Results and discussion

The RMSE of different spirometry readings predicted from
wheeze and cough using baseline technique, SSDs and selected
SSDs are shown in Table 1. The entries in the table indicate

TABLE II
ASTHMA SEVERITY CLASSIFICATION ACCURACY (IN %). THE DIMENSION

OF THE RANKED SSDS IS TWO AND ELEVEN FOR COUGH AND WHEEZE
RESPECTIVELY.

wheeze cough
13-dim SSDs 67.85 62.963
selected SSDs 67.85 74.07
ranked SSDs 57.14 77.77

baseline 61.76

RMSE across all test cases in the leave-one-subject-out setup.
It is clear that the RMSE obtained using SSD reduces com-
pared to that using the baseline scheme for all the spirometry
readings except for FEV1 FVC where the RMSE using SSDs
of wheeze is identical to that using baseline scheme. This
suggests that the spectral characteristics captured by SSD are
indicative of the variation of the spirometry readings due to
different asthma severity levels. It is also interesting to observe
that the RMSE using cough is consistently lower than that
using wheeze indicating the cough to be a better predictor of
the spirometry readings. In fact, the SD also reduces for using
cough compared to wheeze.

Fig. 3 summarizes the features selected using forward fea-
ture selection algorithm corresponding to different spirometry
readings. It is interesting to note that, on average, the number
of features selected for cough based prediction is higher
than that for wheeze based prediction. In fact, a few SSDs
are consistently selected for all test subjects. For example,
2nd SSD is selected for all test subjects as well as for all
spirometry readings. 2nd SSD is computed from 2nd MFCC
which captures the spectral tilt in the range of 100-3700Hz.
This indicates that the spectral tilt in the cough signal could
be a good indicator of the asthma severity. In the case of
wheeze based prediction, no SSD gets consistently selected
for all test subjects. However, the 1st SSD has been selected
for most of the test subjects for predicting FEV1%, FVC%
and FEV1 FVC. Similarly, the 4th SSD turns out to be the
maximally selected feature for FEV1 and FVC. From Table 1,
it is clear that the RMSE drops with selected feature compared
to those without feature selection for most of the spirometry
readings. This suggests that few information bearing SSDs
could predict the spirometry readings with lower RMSE than
that using all SSDs. It is also clear from Table 1 that the RMSE
obtained by using a cough signal is consistently lower than
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those using wheeze signal even with selected features. This
reaffirms that cough is a better predictor of asthma severity
compared to wheeze.

The feature selection is done separately for each test subject
using the respective training set. This results in variations in
the selected SSDs across different training sets in the leave-
one-subject-out setup. This could also lead to overtraining
causing poor performance on the test subject. For this purpose,
we rank order the SSDs in the decreasing order of their
occurances as selected features across different training sets.
We then use top K(1 ≤ K ≤ 13) SSDs from this ranked
list of SSDs and use this as a fixed set of features for all test
subjects. The RMSE vs. K for different spirometry readings
from cough and wheeze signals is shown in Fig. 4. From
the figure, it is clear that the minimum RMSE for predicting
FEV1, FEV1%, FVC, FVC%, and FEV1 FVC are 0.63, 8.71,
0.64, 8.73, 0.09 from wheeze and 0.45, 11.53, 0.55, 12.1,
0.08 from cough respectively. These RMSEs are lower for
most of the spirometry readings compared to those in Table 1
with selected features. This could imply that the set of SSDs
corresponding to the minimum RMSE in Fig. 4 could be more
robust to variation in test subjects compared to SSDs selected
from the training set separately for each test subject.

Using the predicted FEV1%, the asthma severity classifi-
cation accuracy in the leave-one-subject-out setup is given in
Table 2. Classification accuracies are reported using SSDs,
selected SSDs, top few ranked SSDs (two for cough and ten
for wheeze). It is clear that the classification accuracies using
both cough and wheeze are better than baseline; however,
accuracy using cough is better than that using wheeze for using
selected and ranked SSDs. This is mainly because the RMSE
of FEV1% is lower using cough than using wheeze.

V. CONCLUSIONS AND FUTURE WORK

We present a technique for predicting spirometry readings
and asthma severity classification based on cough and wheeze
sound using SSD as the acoustic feature and SVR as the
regression model. The proposed approach predicts FEV1%,
FVC% and FEV1 FVC with RMSE of 11.6%, 10.3%, and
0.08 respectively. The three-class asthma severity classification
using the predicted spirometry readings results in a classi-
fication accuracy of 77.77%. Further improvement on the
RMSE can be made by considering the temporal evolution of
MFCC in each cough/wheeze signal. The presented technique
for predicting spirometry readings could be integrated with
automatic cough and wheeze detector to automatically predict
and monitor the asthma severity from a subject’s voice. This
is part of our future work.
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