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Abstract—In the last decade, modified subspace DoA estima-
tion methods such as G-MUSIC have been proposed, in the
context where the number of available snapshots N is of the
same order of magnitude than the number of sensors M . In this
context, the conventional MUSIC algorithm fails in presence of
close sources because the empirical covariance matrix is a poor
estimate of the true covariance matrix. The G-MUSIC algorithm
is based on Marcenko-Pastur’s works about the distribution
of the eigenvalues of the empirical covariance matrix. A new
modified MUSIC algorithm is proposed. It is based on the
correction of the noise projector obtained by complex Wishart
distribution of the empirical covariance matrix.

Index Terms—MUSIC, DoA estimation , Performances analy-
sis, Wishart distribution, Random matrices

I. INTRODUCTION

The estimation of the Direction of Arrival (DoA) of plane

waves impinging on an array of sensors is an important

problem of great interest in radar and radiocommunication

context. In presence of Multiple sources, MUSIC [1] is one

of the most famous high resolution algorithm. MUSIC is

based on a subspace approach with the estimation of the noise

operator from the empirical covariance matrix. The algorithm

is asymptotically unbiased when the number N of snapshots

is larger than the number of sensors. However, when the

number N decreases the MUSIC estimation becomes biased

with a limited resolution power. These statistical performances

have been highly studied during these last three decades

[2][3][4][5]. Most of these studies with performances predic-

tions are based on the perturbation analysis of the MUSIC

noise projector [6][7] and the Wishart distribution of the

empirical covariance matrix [2][8].

In the context where the number of available snapshots N
is of the same order of magnitude than the number of sensors

M , the previous works show that the MUSIC performances

degrades drastically. In this context, the conventional MUSIC

algorithm can fail in presence of close sources and/or high

correlated sources. Indeed, the empirical covariance matrix is

a poor estimate of the true covariance matrix and the pertur-

bation of the noise projector is important. More precisely, it

is difficult to separate the eigenvalues associated to the noise

subspace and the ones associated to the signal subspace.

In order to improve the MUSIC performances McCloud

and Scharf [9] propose a first modified MUSIC algorithm

and when the number of antennas M is large and at the

same order of the snapshots number N , Mestre et al [10][11]

proposed a second modified MUSIC algorithm G-MUSIC. The

approach uses the large Random Matrix Theory (RMT) results

of Marcenko-Pastur [12] in order to exploit the statistical

distribution of the eigen elements of the empirical covariance

matrix in presence of i.i.d source and noise signals. According

to [10][11] the performances of such new estimator outper-

forms the traditional DoA subspace estimator.

The purpose of this paper is to give an alternative to G-

MUSIC. For that the MUSIC projector is corrected according

to the results of the MUSIC performances prediction papers

[[2]· · · [5]]. Indeed, our paper proposes a modified MUSIC

projector by using the Wishart distribution of the empirical

covariance matrix and the perturbation analysis of the noise

projector. Our approach uses these mathematical tools in order

to obtain the statistical distribution of the MUSIC criterion

value and remove its bias of the MUSIC criterion value.

The new algorithm (W-MUSIC as Weighted-MUSIC) is then

able to resolve unresolved source with a corrected MUSIC

approach. A comparison with G-MUSIC and the deterministic

Cramer-Rao Bound (CRB) is given in this paper.

II. SIGNAL MODELING, ASSUMPTIONS AND PROBLEMS

FORMULATION

In presence of K sources, the signal at the output of the

array of M sensors is

x (t) =
∑K

k=1
ak × sk (t) + n (t) = A× s (t) + n (t) (1)

where x (t) is a M × 1 vector, n (t) is the additional noise,

s (t)=
[

s1 (t) · · · sK (t)
]T

, A =
[

a1 · · · aK
]

and

ak = a (Θk) is the steering vector associated to a source

of direction Θk and signal sk (t). The MUSIC algorithm

[1] estimates the DoAs Θk of impinging sources by ex-

ploiting the eigen-structure of the covariance matrix Rx =
E
[

x (t)xH (t)
]

where E [.] is the mathematical mean. As-

suming that the noise n (t) is spatially white and independent

of the signals sk (t), the true covariance matrix is

Rx = S+ σ2IM with S = APAH (2)

where E
[

n (t)nH (t)
]

= σ2IN , σ2 is the noise level and P =
E
[

s (t) sH (t)
]

is the sources covariance matrix. In MUSIC

the sources covariance matrix S is assumed to be full-rank with

uncoherent multi-paths. Considering all these assumptions, the
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Eigen Value Decomposition (EVD) of Rx and S are

Rx =
∑M

k=1
λkeke

H
k =

∑K

k=1
λkeke

H
k + σ2Π (3)

S =
∑K

k=1

(

λk − σ2
)

eke
H
k (4)

where (H ) denotes the transconjugate, λk (λ1 ≥ · · · ≥
λM ) is the eigen-value associated to the eigen-vector ek
and Π =

∑M

k=K+1 eke
H
k is the noise projector. According

to (1)(3)(4) the steering vectors {a1 · · · aK} span the signal

subspace of {e1 · · · eK} and are orthogonal to the noise

subspace {eK+1 · · · eM} such that: aHk Πak = 0. Thus, the

MUSIC algorithms determines the source DoAs Θk as the K
minima of the following criterion η (Θ)

η (Θ) = aH (Θ)Π a (Θ) (5)

In practice, the true covariance matrix Rx is not available.

The matrix is then estimated from N i.i.d snapshots x (tn),
such that

R̂x,N =
1

N

N
∑

n=1
x (tn)x

H (tn) =
M
∑

k=1

λ̂k,N êk,N êHk,N (6)

where R̂x,N is the empirical covariance matrix and where

the eigen-elements λ̂k,N and êk,N are random variables such

that λ̂K+i,N are different to the noise level σ2. The MUSIC

criterion of (5) becomes

ηN (Θ) = aH (Θ) Π̂N a (Θ) with Π̂N =
M
∑

k=K+1

êk,N êHk,N

(7)

where ηN (Θ) is a random variable for each direction Θ and

Π̂N is the empirical noise projector where aHk Π̂N ak 6= 0
because the subspace {êK+1,N · · · êM,N} is different to the

true one {eK+1 · · · eM}. This is the reason why the MUSIC

performances are limited in this context.

In G-MUSIC[10], the authors modify the criterion ηN (Θ)
from the RMT results of Marcenko-Pastur [12] on the distri-

bution of the eigen-elements λ̂k,N and êk,N when the number

of antennas M is large and at the same order of N . In the

background, the MUSIC performance prediction are mainly

determined from the Wishart distribution of the empirical

covariance matrix R̂x,N and the perturbation analysis of the

noise projector determines the bias Π − Π̂N with respect

to the covariance error Rx − R̂x,N . In this paper, these

previous tools allow us to predict the MUSIC criterion bias

∆ηN (Θ) = E [ηN (Θ)− η (Θ)] in order to obtain a new

algorithm with a unbiased MUSIC criterion.

III. BACKGROUND AND TOOLS

In this section the G-MUSIC[10] algorithm, the determin-

istic Cramer Rao Bound[13], the Wishart distribution and

the perturbation analysis results of the noise projector are

presented.

A. G-MUSIC algorithm [10]

When the magnitudes of N and M are close, the empirical

noise eigenvector êk+i,N is not perfectly included into the true

noise subspace {eK+1 · · · eM} and is not perfectly orthogonal

to the true signal subspace {e1 · · · eK}. It is then a linear

combination of all the vectors {e1 · · · eM}. This is the reason

why G-MUSIC algorithm modifies the MUSIC noise projector

in order to obtain a best separation between the noise and

signal subspace. More precisely, the G-MUSIC projector Π̂G
N

depends on all the eigen-elements of the empirical covariance

matrix R̂x,N such that the projector Π̂G
N is close to Π̂N when

N is larger than the antenna number M of the array. Thus,

the G-MUSIC algorithms determines the source DoAs Θk as

the K minima of the following criterion ηG,N (Θ)

ηG,N (Θ) = aH (Θ) Π̂G
N a (Θ) (8)

Π̂G
N =

∑M

m=1 Φ(m) êm,N êHm,N (9)

where

Φ(m) =

{

1 +
∑K

i=1 δΦmi m > K

−
∑M

i=K+1 δΦmi m ≤ K
(10)

δΦmi =
(

λ̂i,N

λ̂m,N−λ̂i,N

)

−
(

νi

λ̂m,N−νi

)

where ν1 ≥ · · · ≥ νM are the eigenvalues of diag
(

λ̂N

)

−
(

λ̂N λ̂
T

N

)

/N with λ̂
T

N =
[

λ̂1,N · · · λ̂M,N

]

. The coefficients

δΦmi can be seen as correction of the MUSIC noise projector.

B. Deterministic Cramer Rao Bound (CRB)

The Root Mean Square (RMS) error of DoA estimation is

limited by the CRB such that
√

E[∆Θ2
k] > CRB (Θk) where

∆Θk = Θ̂k − Θk is the DoA estimation error . In presence

of Gaussian noise, the expression of the CRB of the k − th
source is

CRB (Θk) =

√

H
−1
[k][k]

2N with H = ℜ
((

ȦHΠȦ
)

⊙ ŜN

)

(11)

where W[i][j] is the ijth element of the matrix W, ⊙ is

the Hadamard product, Ȧ =
[

ȧ (Θ1) · · · ȧ (ΘK)
]

, ȧ (Θ)
is the first order derivative of a (Θ) with respect to Θ,

ŜN = 1
N

∑N

n=1 s (tn) s
H (tn) is the source empirical covari-

ance matrix and Π is the true MUSIC noise projector where

Π = IM −A
(

AHA
)−1

AH (12)

C. Wishart distribution

The matrix error ∆Rx = R̂x,N −Rx is a Random Matrix

where NR̂x,N follows Wishart distribution with parameter

Rx. According to the central limit theorem and [8], the

elements of ∆Rx are asymptotically Gaussian distributed such

that

E [∆Rx] = 0 (13)

E
[

∆Rx[i][j]∆Rx[m][n]

]

=
Rx[m][j] Rx[i][n]

N
(14)
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According to [2] and (13)(14), the Random Matrix is verifying

P1 : E [Tr (∆RxA)Tr (∆RxB)] = Tr(RxARxB)
N

(15)

P2 : E [∆RxA∆Rx] =
Tr(RxA)Rx

N
(16)

P3 : E
[

∆RxA∆RT
x

]

= RxA
T
Rx

N
(17)

where Tr (.) denotes the trace of a matrix.

D. Perturbation analysis of the noise projector

The noise projector error Π̂N − Π is depending on the

covariance error ∆Rx such that Π̂N = Π for ∆Rx = 0.

According to [2], the second order Taylor expansion of ∆Π̂

with respect to ∆Rx gives

Π̂N = Π+ δΠ+ δ
2
Π+ ... (18)

where

δΠ = −U0 −UH
0 (19)

U0 = Π∆RxS
# (20)

S = Rx − σ2IM (21)

where S# is the Moore-Penrose pseudo-inverse of S such that

S# =
∑K

k=1

eke
H
k

λk − σ2
= A

#HP−1A# (22)

and where the second order term is

δ
2
Π = −U0U

H
0 +UH

0 U0 +V0 +VH
0 (23)

V0 = Π
(

∆RxS
#
)2

(24)

IV. MUSIC CRITERION STATISTIC TOWARD W-MUSIC

A. Bias determination of MUSIC Criterion

The MUSIC criterion error value ∆ηN (Θ) = ηN (Θ) −
η (Θ) is depending on the direction parameter Θ. According

to (5)(7)(18), its bias is

E [∆ηN (Θ)] = aH (Θ)∆ΠN a (Θ) (25)

∆ΠN=E
[

Π̂N −Π
]

≈E [δΠ] +E
[

δ
2
Π
]

(26)

The noise projector bias is

∆ΠN≈
σ2

N

(

−Tr
(

RxS
2#

)

Π+ (M −K)S#RxS
#
)

(27)

where (27) is proven in subsection VII-A according to the

results of subsections III-C and III-D. Let us note that

S#RxS
# = S# + σ2S2# (28)

Thus, the noise projector (27) error is proportional to 1/N and

S# such that it is low for large value of N , high sources level

and well conditioned matrix S assumed for non quasi-coherent

and well separated sources. More precisely and according to

section VII-B, the criterion bias for the source direction Θk is

E [∆ηN (Θk)]≈
σ2 (M −K)

(

1 + σ2P[k][k]Q[k][k]

)

NP[k][k]
(29)

where Q = P−1
(

AHA
)

−1
P−1 and P[k][k]/σ

2 is the signal

noise ratio of the kth source. The element Q[k][k] is then large

when the matrices P and AHA are almost full rank. Finally,

the bias of the MUSIC criterion value is large in presence of

correlated and/or close sources.

B. W-MUSIC Algorithm

The purpose of W-MUSIC algorithm is to modify the

criterion value with respect to the direction Θ. For that, the

bias criterion value is removed in order to improve the sources

resolution power. Thus, the W-MUSIC algorithms estimates

the source DoAs Θ̂k as the K minima of the following

criterion ηTrue
W (Θ)

ηTrue
W (Θ) = ηN (Θ)− E [∆ηN (Θ)] (30)

where

ηTrue
W (Θ) = aH (Θ) Π̂W−True

N a (Θ) (31)

Π̂W−True
N = Π̂N −∆ΠN (32)

where Π̂W−True
N is a pseudo-projector. However the matrix

∆ΠN is depending on the unknown true covariance matrix

according to (27). In practice Rx is replaced by its corre-

sponding sample estimate where

∆Π̂N= σ̂2

N

(

−Tr
(

R̂x,N Ŝ2#
)

Π̂N + (M −K) Ŝ#R̂x,N Ŝ#
)

(33)

Ŝ = R̂x − σ̂2
IM and σ̂2 =

∑M
i=K+1 λ̂i,N

N−K

Finally and after some calculations, the modified pseudo-

projector of W-MUSIC is

Π̂W
N = Π̂N −∆Π̂N = αW Π̂N+βW Ŝ#R̂x,N Ŝ# (34)

αW = 1 + σ̂2

N
Tr

(

R̂x,N Ŝ2#
)

βW = − σ̂2

N
(M −K)

(35)

The W-MUSIC DoA estimation criterion is then

ηW (Θ) = aH (Θ) Π̂W
N a (Θ) (36)

= αW ηN (Θ) + βW ηC (Θ)

ηC (Θ) = aH (Θ) Ŝ#R̂xŜ
#
a (Θ)

where the K minima Θ̂k of ηW (Θ) are the sources DoAs

given by W-MUSIC algorithm. Let us note that 1/ηC (Θ)
is close to Capon criterion 1/(aH (Θ) R̂−1

x a (Θ)) that de-

termines the power in each direction Θ. According to (36),

the modified SSMUSIC[9] criterion is ηN (Θ) ηS (Θ) with

ηS (Θ) = 1/(aH (Θ) Ŝ#a (Θ)) close to Capon criterion. The

W-MUSIC pseudo-projector Π̂W
N can be rewritten similarly to

the G-MUSIC one (9) with

Π̂W
N =

∑M

m=1 ΦW (m) êm,N êHm,N (37)

ΦW (m) =

{

αW m > K
λ̂m,N×βW

(λ̂m,N−σ̂2)
2 m ≤ K (38)

where ΦW (m) and Φ(m) are close to 1 for m > K and

close to 0 for m ≤ K and large value of N .
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V. SIMULATIONS

Two correlated sources of directions Θ1 = 0◦ and Θ2 = 30◦

with same Signal Noise Ratio (SNR) are considered in sim-

ulation. More precisely P[1][1] = P[2][2], the noise power is

σ2 = 1 and the correlation rate is r12 = 0.99 = P[1][2]/P[1][1].

The sources arrive on an Uniform Circular Array (UCA)

of N sensors and radius 0.5λ. The performances are given

according to the empirical Roots Mean Square (RMS) error

of the DoA estimation with nb = 500 realizations. The

empirical RMS error RMSk of the k − th source verifies

(RMSk)
2 =

∑nb

i=1

(

Θ̂k(i)−Θk

)2

/nb where Θ̂k(i) is the

estimation of the kth source direction at ith realization. The

signals sk (tn) and noise n (tn) have the same statistical

distribution. The performance of MUSIC, G-MUSIC and W-

MUSIC are compared to the deterministic CRB and the true

W-MUSIC of criterion ηTrue
W (Θ)(5) where the MUSIC criteria

value is perfectly unbiased. The results are presented with

respect to the SNR 10log10
(

P[1][1]

)

. For N = M = 10 the

pseudo-projector weighting Φ(m) and ΦW (m) of G-MUSIC

and W-MUSIC are represented with respect to the index m in

Fig.1 for 10dB of SNR and with respect to the SNR in Fig.2.

The weighting of the G-MUSIC(10) and W-MUSIC(38) are

close and for high SNR reach 1 and 0 for noise and signal

subspace respectively. The Fig.3 and Fig.4 for Gaussian and

Uniform distribution respectively give the RMS error of the

1st source with respect to SNR for N = M = 10. The close

performances show that the influence of distribution is minor

for performance. In Fig.3, Fig.5 and Fig.6 this RMS error is

given with respect to SNR for N = M = 10, 20 and 5 for

Gaussian distribution. The performance improvement of G-

MUSIC and W-MUSIC when N increase is more important

than MUSIC. The performances of G-MUSIC is between the

true W-MUSIC and W-MUSIC where the MUSIC criterion

value is corrected with the true bias and the empirical one

respectively. For large value of N the G-MUSIC algorithm

reach the true W-MUSIC and for small value reach W-MUSIC.

VI. CONCLUSION

The W-MUSIC algorithm corrected the MUSIC criterion

value by removing its approximative bias. The ideal not

operational true W-MUSIC give the best performances. The

simulations show that the performances of G-MUSIC and W-

MUSIC are close. These results are confirm by the analysis of

the pseudo-projector weighting of G-MUSIC and W-MUSIC

similar when the algorithms are able to separate the sources

directions. Thus, W-MUSIC explain in part the behavior of G-

MUSIC with the MUSIC criterion value bias removing. The

W-MUSIC approach can be improved by using more inside

the Wishart distribution. This is an ongoing work.

VII. APPENDIX

A. Noise projector Bias

According to (18), the noise projector bias is

E
[

Π̂
]

≈ Π+E [δΠ] +E
[

δ
2
Π
]

(39)

According to (13)(19)(20), we obtain

E [δΠ] = 0 (40)

According to (20)(23)(24), E
[

δ
2
Π
]

is

E
[

δ
2
Π
]

= −E1 +E2 +E3 +EH
3 (41)

{

E1 = E
[

U0U
H
0

]

E2 = E
[

UH
0 U0

]

E3 = E [V0]
(42)

The matrix E1 is according to (20) as following

E1 = ΠE
[

∆RxS
#S#H∆Rx

]

Π

because the Hermitian matrix ∆Rx verifies ∆RH
x =∆Rx .

According to (16), the matrix E1 is

E1 =
Tr(RxS

#
S

#H)ΠRxΠ

N
= σ2 Tr(RxS

2#)Π
N

The matrix E2 verifies E2 = S#E [∆RxΠ∆Rx]S
# accord-

ing to (20) and according to (16) becomes

E2 = Tr(RxΠ)S#
RxS

#

N
= σ2(M−K)S#

RxS
#

N

According to (16)(24), the matrix E3 is

E3 = Π
[

∆RxS
#∆Rx

]

S# =
Tr(RxS

#)ΠRxS
#

K
= 0

because ΠS#=0 and ΠRx=σ2IM . Thus according to (41),

the matrix E
[

δ
2
Π
]

verifies

E
[

δ
2
Π
]

= σ2

N

(

−Tr
(

RxS
2#

)

Π+ (M −K)S#RxS
#
)

(43)

According to (39)(40)(41) and (43), the expression (27) of the

noise projector bias is proven

2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

m

Φ
(m

) 
o

r 
Φ

W
(m

)

G−MUSIC
W−MUSIC

Fig. 1. Weighting Φ (m) and ΦW (m) of the pseudo projector of G-MUSIC
and W-MUSIC respectively for N = M = 10 and SNR = 14dB.

B. MUSIC Criterion Value in Θk

According to (25)(27), the MUSIC Criterion bias for the

source direction Θk is

E [∆ηN (Θk)] = σ2
(

M−K
N

)

aH (Θk)S
#RxS

#a (Θk) (44)

because aH (Θk)Πa (Θk)=0 for the direction Θk. According

to (28)

aH (Θk)S
#RxS

#a (Θk) = aH (Θk)S
#a (Θk)

+ σ2aH (Θk)S
2#a (Θk) (45)
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Fig. 2. Weighting Φ (m) and ΦW (m) of the pseudo projector of G-MUSIC
and W-MUSIC respectively for N = M = 10.
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Fig. 3. RMS error of the 1st source for N = M = 10 and Gaussian
distribution

where S#S#=A
#HP−1

(

AHA
)

−1
P−1A# and

S#=A
#HP−1A#. Let us note that A#a (Θk)=1k where 1k

is a K × 1 vector whose the kth component value is 1 and

the others are null. Thus, aH (Θk)S
#a (Θk)=1/P[k][k] and

aH (Θk)S
2#a (Θk)=Q[k][k] with Q=P−1

(

AHA
)

−1
P−1 .

The equation (29) is then proven according to (44)(45).
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