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Abstract – In this paper we study tomographic reconstruc-
tion methods in the case that prior knowledge about the ob-
ject is available. In particular, we consider the case that a ref-
erence object that is similar in shape and orientation is avail-
able, which is very common in non-destructive testing applica-
tions. We demonstrate that a differential version of existing re-
construction methods can easily be derived which reconstructs
only the deviation between test and reference object. Since this
difference volume is significantly more sparse, the differential
reconstruction can be implemented very efficiently. We also dis-
cuss the case where knowledge about the misalignment between
test and reference object is available, in which case the efficiency
of the differential reconstruction can be improved even further.
The resulting algorithm is faster, more accurate, and less sensi-
tive to the choice of the step size parameters and regularization
than state of the art reconstruction methods.

Keywords: Computed Tomography, Iterative Reconstruction, Total
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1. INTRODUCTION
X-ray Computed Tomography (CT) is well known in medical diag-
nostic. However, CT is also widely used as a tool for non-destructive
testing (NDT), for instance to identify imperfections such as porosi-
ties or cracks within the material of a variety of components. In some
applications, e.g., automated detection of voids and porosity in alu-
minum castings (cf. Fig. 1), CT is utilized as a process integrated
inspection method (Inline-CT) [1]. The desired characteristics of an
Inline-CT system are a fast measurement of projection data com-
bined with a fast reconstruction and volume analysis process. Both
points are fundamental to reach a short cycle time for the inspection
task.

Speeding up the cycle time is always of great interest for indus-
trial applications and this means generally reducing the acquisition
time of projection data. For this purpose, there are two major ap-
proaches: Reducing the exposure time per projection and measuring
fewer projections. These two concepts are complementary and may
be combined. Regarding the latter approach which we focus on in
this paper, it has been shown that subsampling in the angular domain
is possible if suitable reconstruction algorithms are used [2]. These
take advantage of the fact that the objects of interest are typically
piecewise homogeneous which can be enforced by Total Variation
(TV) regularization [3]. To reduce the number of required projec-
tions even further we can take advantage of prior knowledge in form
of a reference object. In Inline-CT we typically have a reference ob-
ject, e.g., an ideal object sample without any defects, which is almost
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Fig. 1. Example of use for Inline-CT: Inspection of aluminum cast-
ings (e.g. combustion motor piston, left hand side) and colored visu-
alization of the manufacturing defects (blue colored regions) within
a reconstructed volume (right hand side).

identical in shape and orientation to the current test specimen. It has
been shown in [4] that this reference can be taken into account via
an additional regularization term in the so-called Prior Image Con-
strained Compressed Sensing (PICCS) approach.

In this paper, we discuss an alternative approach that takes ad-
vantage of a reference object. It is based on reconstructing only the
difference between test and reference object. Since this difference
is considerably more sparse, the resulting algorithm is faster and
achieves a lower mean squared error compared to PICCS. We also
discuss the case where additional information about the misalign-
ment between test and reference object is available which can op-
tionally be included into the algorithm to improve its efficiency even
further. Note that in the very recent paper [5], a related method called
“Reconstruction of Difference (RoD)” has been proposed in the con-
text of medical CT. While this method also reconstructs the differ-
ence in absorption between a test and a reference volume and it also
includes a registration step to correct for misalignments, it differs
in some aspects from the proposed differential SART. First of all,
RoD operates directly in the observed intensities, while we propose
to compute difference projections in logarithmic intensities (also re-
ferred to as the “ray sums” or “ray lengths”). Since in Inline-CT we
typically have a quite accurate reference this allows us to leverage
sparsity both in the image and the projection domain, speeding up
the reconstruction steps. Moreover, the proposed method to incor-
porate the misalignment information affects only the regularization
terms and is thus unobtrusive for the computationally demanding
forward and backward projection steps. The proposed method can
therefore be combined with existing SART libraries, as long as they
allow to include custom regularization terms.
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2. RECONSTRUCTION WITH PRIOR KNOWLEDGE

2.1. State of the art

Consider a tomography application where we take a set of P projec-
tions of some volume of interest, each projection containing M mea-
surements. If the X-ray spectrum is monochromatic, e.g. in the case
of simulated data, the measured intensities are converted using the
Beer–Lambert law. Applying the Beer–Lambert for real data leads
typically to artifacts like cupping or streaking in the reconstructed
image. Approaches for reducing these effects is not the focus of
this article. However, to avoid cupping or streaking artifacts in the
reconstructed image we apply a mapping from observed to logarith-
mic intensities based on an iteratively computed characteristic curve
according to [6] as a first step.

The resulting logarithmic projections can be described by vec-
tors gp ∈ RM , p = 1, 2, . . . , P or alternatively by a vector g =
[gT

1 , . . . , g
T
P ]T ∈ RM·P×1. In order to reconstruct the desired vol-

ume, we discretize the volume into Nx × Ny × Nz voxels along
a cartesian grid so that the volume can be described by a vector
f ∈ RNx·Ny·Nz×1. In many imaging modalities, we can establish a
linear mapping between f and g, i.e.,

g ≈ A · f , (1)

where A ∈ RM·P×Nx·Ny·Nz is the forward projection matrix and
the approximate sign in (1) represents inaccuracies in the linear map-
ping due to additive measurement noise and some modeling errors.
Examples of imaging modalities that are based on (1) are given by
X-ray tomography (where A contains intersection lengths of X-rays
between the X-ray source and all the detector pixels), Ultrasound
(where A contains shifted copies of the transmitted US pulse) and
MRI (where A contains harmonics corresponding to the k-space
sampling trajectories).

In order to solve (1) we classically require more observation than
unknowns, i.e., M ·P ≥ Nx ·Ny ·Nz. In this case, we can solve (1)
via

f = arg minf ‖A · f − g‖2 s.t. f � 0, (2)

which can be done efficiently via iterative methods like the Algebraic
Reconstruction Technique (ART [7]) and its variations (SART [8],
SIRT [9]). ART is based on gradient descent iterations of (2) which
take the form

f (k+1) = f (k) − µ ·AT ·
(
A · f (k) − g

)
, (3)

where k is the iteration index and µ is the step size. In other words,
(3) performs alternating multiplications with A and AT (which
are the forward and backward projection operators, respectively)1.
Moreover, to enforce the non-negativity constraint in (2), negative
values in f can be clipped after each gradient step.

However, a reconstruction according to (2) is often undesirable
in practice since to satisfy M · P ≥ Nx · Ny · Nz we need a large
number of projections P , which takes significant measurement time
and may cause harmful radiation exposure. It has been shown that an
accurate reconstruction from far less projections is possible if prior

1This is an oversimplified explanation of ART-type techniques which con-
tain some more steps for improving the numerical stability (such as row-sum
and column-sum normalizations) and the computational efficiency (such as
performing updates in subsets of one or more projections). Since these steps
are the same for all the subsequent extensions, we have omitted them for
brevity.

knowledge about the volume to be reconstructed is known by apply-
ing appropriate regularization (e.g. Total Variation (TV) [2], [3]),
i.e.

f = arg minf ‖A · f − g‖2 + λ · h(f) s.t. f � 0, (4)

where h(f) is an appropriate regularizer. For instance, in X-ray to-
mography objects are typically piecewise homogenous which can be
enforced by the TV regularization h(f) = ‖f‖TV. The TV-norm
regularizer encourages solutions having sparse gradients which cor-
respond to piecewise constant volumes. We can solve (4) by alter-
nating between ART-like gradient steps (3) and gradients of the reg-
ularization term h(f) (for details, cf. [2]).

In some applications, even more prior knowledge is available in
form of a prior volume fref that is close to the desired volume f .
This is often the case in Inline-CT where many parts of the same
type are being inspected and the “ideal” reference part is known. It
also occurs in medical diagnosis, e.g., in radiation therapy where
earlier X-ray scans of the same region are available. In this case
[4] has proposed the Prior Image Constrained Compressed Sensing
(PICCS) approach, which solves the following optimization problem

f = arg minf ‖A · f − g‖2 + λ · α · h1(f)

+ λ · (1− α) · h2(f − fref) s.t. f � 0, (5)

i.e., it adds a second regularization term h2(·) to the difference
f − fref . In particular, [4] suggests to use regularizers of the form
hi(x) = ‖Ψi · x‖1, i = 1, 2, where Ψi are sparsifying linear
transforms.

2.2. Differential SART

We propose a modification of the PICCS scheme for the Inline-CT
case where reference data is available in form of a reference volume
fref and reference projections gref , where the latter can be either
measured projections or projections synthesized via gref = A ·fref .
We use the fact that if fref is close to f then ∆f = fref − f is
sparse, which is typically the case in Inline-CT because differences
between reference and test object should only occur by defects and
tolerances in the casting process. Also we have

A ·∆f = A · fref −A · f ≈ gref − g = ∆g. (6)

Therefore, transforming the measured projections of the test object
g into differential projections ∆g, we can obtain ∆f by solving

∆f = arg min∆f ‖A ·∆f −∆g‖2 + λ · h(∆f)

s.t. fref � ∆f , (7)

after which the desired f is found via f = fref − ∆f . The major
advantage of (7) compared to (5) is that all the involved quantities
are sparse and therefore, (7) can be solved more efficiently. This
is also an advantage compared to the RoD method from [5], which
does not form an explicit difference in (logarithmic) projections and
can hence not exploit the sparsity of ∆g. In particular, if we write
out the gradients for PICCS and Diff-SART, we obtain

f (k+1) = f (k) − µ ·AT(A · f (k) − g) + λ ·∇h̃(f) (8)

for PICCS (where h̃(f) = α ·h1(f) + (1−α) ·h2(f −fref) is the
total regularization term) and

∆f (k+1) = ∆f (k) − µ ·AT(A ·∆f (k) −∆g) + λ ·∇h(∆f)
(9)

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2419



for the Diff-SART (where h(∆f) is the regularization term dis-
cussed below). Comparing (8) and (9) we notice that in contrast
to PICCS, the Diff-SART only needs to update the difference vol-
ume ∆f which is much more sparse than the full volume f . There-
fore, the forward and backward projection which take the most of the
computational complexity become much simpler: for the forward
projection, computing A · ∆f (k) requires much fewer multiplica-
tions and additions than computing A · f (k) due to the sparsity of
∆f (k). The same argument is true for the backward projection AT.
We compare the number of required multiplications with a realistic
cone-beam setup numerically in Section 4.

Regarding the regularization, it is sufficient to choose h(∆f)
such that it encourages the sparsity of ∆f , e.g., h(∆f) = ‖f‖1.
In this case, the regularization step can be achieved very efficiently
via a soft thresholding operation [10]. The comparably cumbersome
computation of the TV gradient is thus not necessary which implies
additional savings in the computational complexity. Moreover, since
soft thresholding sets all small values to zero, the sparsity of the dif-
ference volume ∆f is guaranteed even in noisy settings. Note that
for PICCS, both h1(·) and h2(·) correspond to TV steps according to
[4], which means that compared to PICCS, the Diff-SART approach
is faster in both the gradient and the regularization steps. The com-
plexity of the RoD method from [5] is not directly comparable, since
there a separable paraboloidal surrogates (SPS) approach is used for
the gradient steps. Note though that the introduction of the differ-
ence in [5] requires altering the entire update step whereas for the
Differential SART, existing forward and backward projectors can be
used since only the regularization step is affected.

3. INCORPORATION OF MISALIGNMENT

The Diff-SART approach relies on the fact that a good reference is
available, i.e., a volume fref that is close to the desired volume f
in the sense that ∆f = fref − f is more sparse than f . In many
practical applications reference data is available but it might be mis-
aligned. For instance in inline inspection of castings, the “ideal”
shape of the casting is known, however, the test specimen might be
slightly misaligned due to some slackness in the mechanical fixture
and tolerances in the casting process.

In this section we show how the Diff-SART can be improved if
information about the misalignment is available. We do not discuss
the estimation of the misalignment since many approaches have been
proposed in literature, e.g., reference- or registration-based calibra-
tion methods, where a calibration object is used to evaluate the mis-
alignment (also called “phantom-based” calibration methods [11],
[12], [13]), and in reference-less algorithms without using special
calibration specimen (also called “self-calibration” methods [14],
[15]). Moreover, as shown in [16, 5], if prior information about
the object is available, registration parameters can be learned during
the reconstruction, by minimizing the likelihood function via gra-
dient steps over a differentiable registration operator. Any of this
approaches or also optical techniques (at least to some degree of ac-
curacy) can be applied to estimate the spatial alignment of the current
test specimen.

We model the volume of our test specimen in the following way

f = T (fref)− fe, (10)

where fref is the reference volume and T (·) represents an affine
transformation (which may include rotation and translation) that ac-
counts for the misalignment, which we assume known. Moreover,
fe is the residual volume which contains the deviations between the
test volume and the reference volume which contains the defects we

Fig. 2. Shepp-Logan phantom: Left: original, Middle:
shifted+rotated, Right: Difference “ghost” image.

are interested in as well as further deviations due to manufacturing
tolerances and errors in the estimation of T (·). In light of (10), we
can express the ∆f in the Diff-SART as

∆f = fref − f = fref − T (fref)︸ ︷︷ ︸
fghost

+fe, (11)

Therefore, if we apply the Diff-SART as before, this gives rise
to a “ghost” image of the reference volume given by fghost =
fref − T (fref). We exemplify this ghost image in Figure 2 based
on a Shepp-Logan phantom. However, since T (·) is assumed to
be known, fghost can be computed. Therefore, the misalignment
information can be incorporated into the Diff-SART approach2 by
modifying (7) into

∆f = arg min∆f ‖A ·∆f −∆g‖2 + λ · h(∆f − fghost).

(12)

Note that (12) only represents a small change in the Diff-SART al-
gorithm (namely, an additional subtraction step in the regularization
term) and therefore, it is very easy to implement. Moreover, this for-
mulation allows to update fghost during the iterations. This maybe
beneficial since as soon as a coarse reconstruction is available, it can
also be used to improve the estimation of the misalignment T (·).
In comparison, while the RoD method from [5] finds the regulariza-
tion parameters during the reconstruction, it requires to completely
rewrite the entire reconstruction algorithm, since all parts of the cost
function are affected.

4. NUMERICAL RESULTS

In this section we present some numerical results to assess the per-
formance of the proposed differential reconstruction algorithm. We
model the volume f to be reconstructed as a shifted and rotated copy
of the reference volume fref . In particular, for the first set of experi-
ments we choose

f = Rotate{Shift{fref ,∆x,∆y}, θ}, (13)

where fref is a 400×400 Shepp-Logan phantom (shown in Figure 2,
∆x and ∆y represent the shift in voxels and θ is the misalignment
angle in degrees. The projections are taken in a circular fan-beam
geometry with a source-object and source-detector distance of 900
and 1500 voxel units, respectively, using 472 detector pixels. We
use projections from 18 equispaced angles (i.e., every 20 degrees).
Note that in this case, Nyquist sampling would have required more

2Alternatively, we can subtract A·fghost from ∆g to directly reconstruct
fe. We choose the presented approach since it is easier to update fghost

when a better estimate of the misalignment becomes available.
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Fig. 3. Number of multiplications for Diff-SART vs. “quality” of the
reference: It is assumed that f is equal to the reference but shifted by
∆x and ∆y voxels and rotated by ∆θ degrees. The black line corre-
sponds to the conventional SART approach. Compared to SART, the
number of multiplications is reduced by a factor around 1000, even
for severe shifts and rotations.

Fig. 4. Mean Square Error (after 3 iterations) vs. “quality” of the
reference: It is assumed that f is equal to the reference rotated by θ
degrees according to (13).

Fig. 5. Piston phantom (413× 413 voxels). Left: reference volume
fref , right: test volume f : rotated by θ = 1.5 degrees, with four
defects (fe), seen as missing material.

Fig. 6. Mean Square Error vs. quality of the estimate of the mis-
alignment ∆θ = |θ̂ − θ| for an actual misalignment of θ = −1.5◦.

than 330 projections so that the sub-Nyquist sampling factor is close
to 20.

Using this model, Figure 3 shows the number of required mul-
tiplications in each forward projection step of the regular SART and
the proposed Diff-SART. We observe that the better the agreement
between reference and test object, the sparser the differential volume
∆f which leads to fewer and fewer required multiplications. Still,
even for a significantly rotated reference, we can save multiplica-
tions on the order of a factor of 10. Note that this is an advantage
which is not exploited in the RoD approach from [5].

For the same setup, Figure 4 shows the MSE that is achieved
after 3 iterations of a TV-regularized SART, the PICCS method,
and the proposed Diff-SART method. For this experiment, we set
∆x = ∆y = 0. Consequently, for θ = 0 we have f = fref and
therefore, the Diff-SART achieves an MSE equal to zero. While
this is an unrealistic assumption, we see that even for θ significantly
bigger than zero, the MSE of Diff-SART outperforms not only the
TV-SART but also the PICCS method. It is clear that iterative meth-
ods are sensitive to the choice of the parameters. For the presented
methods the main parameters are the SART step size µ and the reg-
ularization parameter λ. For PICCS there is a third parameter α that
weights the two regularization terms. To investigate the effect of
the parameters we depict two sets of curves. For the curves labeled
“fix. par”, the parameters were fixed and an attempt was made to
tune them to achieve a good MSE. The values are given by µ = 2,
λ = 10−3 for TV-SART, µ = 3, λ = 2 · 10−3 for Diff-SART, and
µ = 2, λ = 5 · 10−3, α = 0.91 for PICCS. On the other hand,
for the curves labeled “opt. par”, the parameters were optimized in
every iteration to achieve the lowest possible MSE (note that this
means three degrees of freedom for PICCS and only two for TV-
SART and Diff-SART). The result shows that PICCS can perform
close to Diff-SART, but overall it is more sensitive to the choice of
the parameters.

For the second set of experiments we switch to a more realis-
tic piston phantom which is depicted in Figure 5. It corresponds
to a cut through a piston, inspired by the real piston shown in Fig-
ure 1. The piston contains a ring of highly absorbing material (such
as iron) for improved stability. We follow the model described in
Section 3, i.e., f = Rotate{fref , θ = −1.5◦} − fe, where fe

contains four small defects. We apply the misalignment correc-
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TV-SART PICCS Diff-SART
Shepp-Logan phantom 1.05 s 1.17 s 0.48 s
Piston phantom 0.95 s 1.09 s 0.48 s

Table 1. Reconstruction time per iteration for TV-SART, PICCS,
and Diff-SART corresponding to the two experiments shown in Fig-
ures 4 and 6, respectively.

tion procedure described in Section 3 where we compute fghost via
fghost = fref − Rotate{fref , θ̂}, where θ̂ is our estimate of the
misalignment θ. Since we want to study the sensitivity to the es-
timation quality of θ̂, we depict the achievable MSE after 5 itera-
tions as a function of ∆θ = θ̂ − θ so that ∆θ = 0 corresponds
to the case where the misalignment is perfectly known and larger
values of ∆θ correspond to inaccurately estimated misalignments.
The result is shown in Figure 6. As a comparison, we depict the
TV-SART reconstruction result (that uses no misalignment correc-
tion at all) as well as the PICCS method where we changed the prior
image to Rotate{fref , θ̂}. We observe that the Diff-SART method
achieves a lower MSE than PICCS, which is more sensitive to mis-
alignment. Again, we compare the optimal adaptive choice of pa-
rameters to a fixed set of parameters which are given by µ = 1,
λ = 6 · 10−3 for TV-SART, µ = 2.5, λ = 3 · 10−3 for Diff-SART,
and µ = 2, λ = 3 · 10−3, α = 0.91 for PICCS. As before, we
observe that PICCS is much more sensitive to the choice of these
parameters than the Diff-SART.

To demonstrate that Diff-SART is also faster, Table 1 summa-
rizes the reconstruction times per iteration for the two experiments
shown in Figures 4 and 6. Note that despite the fact that we have
used very naive Matlab implementations without any optimization,
a very clear advantage in reconstruction time of a factor of more
than two is visible. Also, PICCS is not only slower than Diff-SART
but even slower than TV-SART since it includes two regularization
steps.

5. CONCLUSIONS

In this paper, we introduce the Differential SART algorithm for un-
dersampled tomographic reconstruction. We show that when prior
information in form of a reference is available, the reference can
be subtracted in the projection domain, leaving only the difference
image to be reconstructed. Since this image is significantly more
sparse, the forward and backward projection operators can be im-
plemented much more efficiently. At the same time, the comparably
cumbersome total variation regularization steps can be replaced by
simpler soft thresholding operations. We also demonstrate that if
prior knowledge on the misalignment between the test volume and
the reference volume is available, this knowledge can be incorpo-
rated to improve the reconstruction performance further. Compared
to the state of the art reconstruction algorithm PICCS, the proposed
Diff-SART is faster, achieves a lower MSE, and is less sensitive to
the choice of the step size and regularization parameters. Moreover,
it can be implemented by modifying existing regularized SART im-
plementations which allows to reuse existing libraries.
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