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Abstract—A new 3-D microwave imaging technique, based on
compressive sensing, is proposed for use with sparse antenna
arrays. It was designed to enable cost-effective 3-D imaging and
tracking of people in an indoor environment. This algorithm is
able to image both sparse and cluttered environments, through
the use of wavelet transforms and compressive sensing techniques.
The main advantage of the proposed technique is that it enables
the use of much sparser antenna arrays than is possible with
the traditional range-migration algorithm, reducing the cost of
microwave imaging systems. Experiments show that the compres-
sive sensing algorithm produced high quality 3-D images using
antenna arrays that are 90 to 96% sparse. This reduces the cost
of the antenna array by a factor of 10 to 25, when compared to
traditional dense arrays, without a loss in image resolution.

Index Terms—Microwave imaging, compressed sensing.

I. INTRODUCTION

This work focuses on large-scale indoor microwave imaging

of people and furniture within a room. A planar antenna

array transmits high-frequency microwaves, which reflect off

these objects and are captured back at the antenna array.

These backscatter reflections are processed to form a three-

dimensional (3-D) image of the people and other objects

within the room. Such microwave imaging systems enable

multiple applications within the smart home, such as hand

gesture recognition, indoor positioning and motion detection.

Industrial applications include 3-D robotic arm tracking.

However, few large-scale 3-D microwave imaging systems

have been built to date due to cost concerns. A large antenna

aperture is required for good image resolution, and most

image reconstruction algorithms (such as the range migration

algorithm, RMA [1]) require the antennas to be placed in

2-D grid array with sub-wavelength spacing. Violating this

requirement typically results in grating lobes and poor image

quality [2]. A large number of antennas are therefore required.

It has been shown [3] that an array of at least 64×64 antennas

is needed for the applications mentioned above, requiring over

4000 antennas and radio transceivers.

The cost of these systems can be reduced by designing

each antenna and transceiver to be as low-cost as possible,

through the use of low-power and low-quality components [3].

The approach taken here, however, is to use sparse antenna

arrays to reduce the cost. These sparse arrays, also known

as thinned arrays, have the same aperture, and hence provide

the same imaging resolution, as a fully-populated array, but

contain fewer antennas. If the existing fully-populated two-

dimensional array contained N × N antennas, then the pro-

posed sparse array will contain M � N2 antennas, randomly

placed within the existing array aperture.

Since the standard RMA algorithm requires antennas to be

placed on a dense regular grid [1], a different algorithm needs

to be used to reconstruct the images. A novel compressive

sensing (CS) image reconstruction algorithm was therefore

developed for use with these sparse antenna arrays.

While 3-D microwave imaging using fully-populated planar

arrays has been well researched [1] [4] [5], imaging using

sparse antenna arrays has been less well investigated. Research

into using sparse linear arrays and CS to capture 2-D images

for radar applications [6] [7] has assumed that the scene is

mostly empty except for one or two aircraft or other objects,

which occupy only a few pixels in the image. Prior attempts

to use CS with sparse planar antenna arrays for 3-D imaging

[8] again assumed that the scene being imaged is sparse in

the spatial domain. Unfortunately, this assumption that the

environment is mostly sparse except for a few point reflectors

cannot be made for indoor imaging applications, where the

environment is cluttered with multiple large objects.

It will, however, be shown in this paper that these complex

indoor scenes can be transformed into the wavelet domain

where they do have sparse representations, allowing CS

reconstruction to be performed. The novelty of this paper

therefore lies in borrowing the wavelet transform from optical

compressive imaging and using it to capture 3-D images of

complex scenes using sparse antenna arrays.

II. OVERVIEW OF COMPRESSIVE SENSING

Compressive sensing allows a compressible signal g to be

captured and reconstructed when the average sampling rate is

below the Nyquist threshold [9]. A signal is compressible if

the information rate is much less than the signal bandwidth.

Let w be the representation of signal g (of length N ) in the

Ψ domain. g is compressible, or sparse, if there exists some

domain Ψ in which most of the coefficients of w are zero, or

can be set to zero without perceived loss in signal quality.

The measurement of signal g is performed by correlating it

with a set of measurement vectors {Φj}Mj=1. Each correlation

gives a single measurement mj . If the measurements are noisy

with a standard deviation of σ, the original signal can be

reconstructed via the optimization problem:

min
g′
‖Ψ∗g′‖l1 subject to ‖m− Φg′‖l2 ≤ σ, (1)
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where Ψ∗ is the transform into the domain where g is sparse

and m is a vector containing all the measurements mj .
It has been shown [10] that if the mutual coherency between

Φ and Ψ∗ is small, the optimization problem will converge,

with high probability, to correct solution g when only a small

number of measurements M < N are made.

III. COMPRESSIVE SENSING FOR MICROWAVE IMAGING

The proposed compressive-sensing algorithm for microwave

imaging attempts to recover a 3-D image of an indoor environ-

ment from discrete radio frequency samples, collected using

a sparse planar antenna array. Since it is based on the general

algorithm described in Section II, the same variables will be

used. The variables, in this case, represent the following:

• g is the 3D image to be recovered.

• Vector m contains the complex voltage samples recorded

at each antenna at multiple radio frequencies.

• Φ describes how the reflected radio waves are sampled.

• Ψ∗ is the sparsifying transform.

A. Sampling the Scene
The scene must first be illuminated by a microwave signal

before it can be sensed. One antenna will therefore transmit a

continuous wave (CW). This wave reflects off objects in the

scene and the reflections are received by other antennas in

the array. The magnitude and phase of the reflected wave is

recorded at each antenna as a complex voltage and stored in

vector m. Once all receiving antennas have been sampled, the

transmitting antenna transmits the next frequency ωi in a set

of frequencies {ωi}Nf

i=1. If there is more than one transmitting

antenna, the process is repeated for each transmitter.
Standard 3-D microwave imaging algorithms, including the

RMA algorithm, assume that the antennas are arranged in a

fully-populated, rectangular grid with regular sub-wavelength

spacing and that the frequency steps wi are equally spaced

[4]. The CS algorithm makes the same assumption, with the

exception that only a fraction of the possible antenna locations

are actually populated; and only a fraction of the frequency

steps are actually transmitted and sampled, as illustrated in

Fig. 1. To ensure that the CS sampling function is incoherent to

the sparsifying function, the antenna locations and frequency

steps are chosen randomly. The backscattered wave is therefore

randomly undersampled in both space and frequency.

λ

(a) (b)

2

Fig. 1. (a) Fully-populated antenna array (b) Sparse array with randomly-
placed antennas, where the black squares indicate actual antenna locations

The antenna array and scene geometry is shown in Fig. 2.

The antenna array lies in the xy-plane at z = Z0, and contains

at least one transmitting antenna and any number of receiving

antennas. The reflectivity of point (x, y, z) in the scene is given

by function f(x, y, z). The distance from antenna at location

(xa, ya) to point (xs, ys, zs) in the scene is given by:

d(xa, ya, xs, ys, zs) =
√

(xa − xs)2 + (ya − ys)2 + (Z0 − zs)2. (2)

Z0
z

x

y

Sparse
antenna array

Scene f

Point (xs, ys, zs)
Distance d

Antenna at
(xa, ya, Z0)

Fig. 2. The geometry of the sparse antenna array and the scene being imaged

The sampling matrix, Φ, describes the relationship between

the scene being imaged and the backscatter radio-frequency

(RF) samples. Assume that the scene consists of a single point

reflector at position (xs, ys, zs) with reflectivity f(xs, ys, zs).
The reflected RF signal m measured at antenna at location

(xr, yr, Z0), when antenna at location (xt, yt, Z0) transmits at

frequency ωi, is then given by:

mpoint(xr, yr, xt, yt, ωi) =

f(xs, ys, zs)

d(xt, yt, xs, ys, zs)d(xr, yr, xs, ys, zs)ki

× e−jki(d(xt,yt,xs,ys,zs)+d(xr,yr,xs,ys,zs)), (3)

Since m represents the voltage, and hence electric field

strength, at each receive antenna, the denominator term in (3)

takes into account the attenuation in received field strength

with distance from point reflector. The exponential term gives

the round-trip phase delay and wavenumber ki = ωi/c, where

c is the speed of light. Constants have been omitted.

By regarding any complex scene f as a collection of point

reflectors, the signal received for any arbitrary scene can be

found by integrating over the scene:

m(xr, yr, xt, yt, ωi) =

∫∫∫
scene

f(x, y, z)

d(xt, yt, x, y, z)d(xr, yr, x, y, z)ki

× e−jki(d(xt,yt,x,y,z)+d(xr,yr,x,y,z))dxdydz (4)

If the 3D scene to be imaged is discretized into voxels, the

integrals in (4) can be replaced with summations and the entire

expression can be written as a matrix-vector multiplication:

m = Φf, (5)
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where the discretized scene f , a 3-D matrix, is vectorized for

purposes of this calculation. Likewise, m is a list of all the

backscatter measurements taken at the different antennas and

frequencies. Measurement matrix Φ contains a row for each

measurement at each antenna and frequency, and a column

for each point in the scene. Element Φa,b at location (a, b) in

matrix Φ is given by:

Φa,b =
e−jka(dt(a,b)+dr(a,b))

dt(a, b)dr(a, b)ka
, (6)

where dt(a, b) is the distance from the transmitting antenna

used in measurement a to point b in the scene, dr(a, b) is the

distance back to the receiving antenna and ka represents the

microwave frequency used for measurement a.

These equations are for the general MIMO case, where

any antenna may be arbitrarily designated a transmitter or a

receiver. Simplifications can be made for single transmitter

imaging systems by setting xt and yt constant; and for

colocated systems (where the receiving antenna is placed

immediately adjacent to the transmitting antenna) by replacing

variables xt and yt with xr and yr.

B. Sparsifying the Image

Although the scene may contain many objects, and hence

not be sparse in the spatial domain, the surface of each object

is typically made from a single material. Each object therefore

appears as a solid surface with uniform intensity when imaged

in the microwave spectrum. Such piecewise-constant images

of real-world objects are known to be sparse in the wavelet

domain [11]. The discrete wavelet transform is therefore used

as the sparsifying transform, Ψ∗.

The CS algorithm for microwave imaging can be summa-

rized as solving the following optimization problem

min
f ′
‖wavelet {f ′}‖l1 subject to ‖m− Φf ′‖l2 ≤ σ, (7)

where f ′ is the estimate of the vectorized 3-D scene, m
contains the backscatter measurements, Φ is given in (6) and

σ is the standard deviation of the RF noise at the receiver.

Since each row of Φ represents a randomly selected antenna or

frequency, it can be shown that Φ is incoherent to the wavelet

transform Ψ∗ [10], ensuring stable image recovery.

Besides being able to handle sparse antenna arrays much

more efficiently and accurately than the range migration al-

gorithm, the compressive algorithm also has the advantage

of being able to handle multistatic systems where multiple

transmitters are spaced multiple wavelengths apart.

IV. EXPERIMENTAL SETUP

A. Antenna Array

A sparse antenna array was built to evaluate the CS im-

age reconstruction algorithm. Since the exact number and

placement of antennas required to image a given scene was

uncertain, an XY-table was used to mechanically move a

single transmit antenna and a single receive antenna to each

of the random antenna locations. In this way, a large sparse

antenna array was emulated using just two physical antennas.

This emulation was possible because the scene remain fixed

throughout the imaging process.

The XY-table and two Vivaldi antennas used to emulate the

sparse array are shown in Fig. 3. It must be emphasized that

the XY-table was used merely for evaluation purposes; the final

system would use the same image reconstruction algorithm but

with a fixed sparse array of a few hundred randomly placed

antennas.

Transmit antenna

Receive
antenna

Resolution
phantom being
imaged

Linear actuators
to move
antennas

Fig. 3. The antenna array emulator.

A simple CW transmitter and direct conversion receiver,

as shown in Fig. 4, were used to measure the reflected RF

signal at each antenna location. The transceiver operates over

a 3 GHz bandwidth, from 17 to 20 GHz, with the transmit

power controllable from -40 to 10 dBm. The RF frontend was

intentionally kept simple so that the same circuit could be used

at higher millimeter-wave frequencies.

Signal
generator
17 – 20GHz

Power Amplifier

LNA

50dB

ADC buffersADCs

I

Q

TX
antenna

RX
antenna

-40 to 10dBm

Fig. 4. The RF frontend used to transmit CW signals and record the
backscatter.

B. Performance Metrics

To compare the quality of images produced by sparse

antenna arrays to those produced by fully-populated arrays,

the image signal-to-noise ratio (SNR) and image resolution

were measured for different array configurations. The image

SNR of the resulting 3-D images was computed using [12]

SNRimage =
μobject − μbg

σbg
, (8)

where μobject is the average intensity of the voxels containing

the object of interest, μbg is the average intensity of the

background, and σbg is the background standard deviation.
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Image resolution was measured by imaging a phantom

consisting of a set of brass strips with decreasing spacing

between them, and determining the closest resolvable strips.

To evaluate the feasibility of sparse arrays for hand gesture

recognition, a hand phantom was created using pig skin and

tissue. Both phantoms are shown in Fig. 5.

C. Implementation of Reconstruction Algorithm

The CS reconstruction algorithm was implemented in MAT-

LAB, using native wavelet transforms and the SPGL1 library

[13] to solve the optimization problem.

V. IMAGING RESULTS

The array emulator was used to evaluate a fully-populated

64× 64 antenna array (4096 antennas total) with an aperture

of 320 × 320 mm. Sparse arrays with the same aperture but

consisting of 1024, 400 and 160 antennas were also emulated,

representing 25%, 10% and 4% array densities, respectively.

The following microwave imaging algorithms were compared:

• RMA: The RMA algorithm was evaluated as a base-

line, with colocated transmit and receive antennas. For

arrays smaller than 4096 antennas, zero filling in the

missing antenna locations generally gave better results

than decreasing the array aperture. This is because the

random antenna placement helps to mitigate some of the

grating lobes that typically result from running the RMA

algorithm on sparse arrays.

• Coloc CS: The CS algorithm was evaluated on random

sparse antenna arrays with colocated transmit and receive

antennas. When an antenna transmits, only the antenna

closest to it records the backscatter.

• MIMO CS: The CS algorithm was used with a sparse

array where each receive antenna records backscatter

from all other transmitters. Nine transmitters were used,

evenly distributed throughout the array, for the 1024 and

400 element arrays. The sparsest array of 160 antennas

consisted of 80 transmit antennas on one diagonal of the

array and 80 receive antennas on the other.

The phantoms in Fig. 5 were imaged using both RMA and

CS algorithms. While true 3-D images were captured, 2-D

projections of these images are shown. These phantoms were

placed at a distance of 0.5 m from the antenna array. It is clear

that the CS algorithm is able to generate acceptable images

of these phantoms with 400 antennas or less, while the RMA

algorithm requires a dense 64× 64 array of 4096 antennas.

Fig. 6 shows the image resolution that can be obtained

by each of these imaging algorithms and array sizes, when

the scene is 0.5 m from the array. The MIMO CS algorithm

produced images with a 12.5 mm resolution with as few

as 160 antennas. The Coloc CS achieved 15 mm resolution

with 1024 antennas and 25 mm resolution with 400 antennas.

The standard RMA algorithm produced similar resolution

images, but required at least 1024 antennas. The proposed CS

algorithm therefore produced higher resolution images with

6× fewer antennas than the standard RMA algorithm.

Object being
imaged 400 160

RMA

CS

400 16010244096
Number of Antennas

RMA

CS

Human-hand
phantom from
pig skin

Brass resolution
tester

Image
Pending

Image
Pending

Fig. 5. Comparison of 2-D projections of 3-D images obtained using the RMA
algorithm and the proposed CS algorithm for various numbers of antennas.
The human hand phantom is life-size, while the brass resolution tester is
200mm in length.

Of interest is the 4096 antenna array, representing a fully

populated array, which allows traditional microwave imaging

to be used without grating lobe issues. Therefore, in this case,

the exact solution determined by the RMA algorithm produced

slightly higher resolution images than the approximate solution

found by the CS approach.

Fig. 6. Image resolution achieved by each algorithm for different array sizes

Since the RMA algorithm is known to work well at low

transmit power levels [3], the CS algorithm was evaluated over

a range of transmit powers. Fig. 7 shows that while the RMA

algorithm running on a dense array produced good images

with a transmit power as low as -25 dBm, two of the three

sparse array CS implementations were only able to operate

down to -20 dBm. This is because the sparse array contains

fewer antenna elements than the dense array, and hence has

lower gain [14]. Even though the minimum power required for

each radio transceiver increases by a factor of 3.2 (5dB) for

the CS case, the number of transceivers decreases by at least a

factor of 4, resulting in a net decrease in power consumption.

Interestingly, at higher powers, the CS algorithm produces

images with a higher image SNR than the RMA algorithm,
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even though fewer antennas were used. This is because at

higher transmit powers, the image SNR is limited by the image

recovery algorithm, and not the received signal SNR. Hence,

the decreased array gain has no effect.

Fig. 7. The effect of transmit power on image SNR

VI. DISCUSSION

While the proposed CS algorithm has been shown to reduce

the required number of antennas, it does have two drawbacks

over the traditional range migration algorithm: computational

cost and tuning parameter sensitivity. On average, a MATLAB

implementation of the CS algorithm was 370× slower than a

MATLAB RMA algorithm, due to the computational com-

plexity of the iterative l1-norm minimization solver and the

size of the sampling matrix Φ. Other l1-norm minimization

libraries, such as NESTA [15], were investigated, but showed

no performance improvement.

In practice, the CS algorithm would most likely be used in

a real-time video imaging system. Therefore, the solver could

be seeded with the previous video frame, provided the changes

between frames are minimal, reducing computation time.

The quality of the produced images was also found to be

sensitive to the noise parameter σ. While σ was manually

tuned for the results presented here, an iterative tuning algo-

rithm can be used for real-time online applications:

• Start by setting σ to its largest possible value, i.e. σ =
‖m‖l2, where m is the measurement vector.

• Decrease σ on each subsequent iteration frame until σ
is made too small, usually indicated by the optimization

solver suddenly requiring a large number of iterations

to converge on a solution. At this point, σ should be

increased slightly.

• Since SNR does not change much between subsequent

video frames, only small changes should be required to

σ from one frame to the next.

An alternative would be to use a homotopy algorithm for

CS, such as [16] [17], where each recovered video frame can

be both used to seed recovery of the next frame and iteratively

determine the optimal value for σ. While it would have been

advantageous to evaluate the optimizations discussed here, it

was not possible due to the many hours that the motorized

XY-table takes to gather the data for a single frame.

VII. CONCLUSION

Although the RMA imaging algorithm is able to produce

images from an antenna array as sparse as 25%, the new

CS algorithm was shown to work with random sparse arrays

with just 4% density. Furthermore, the CS algorithm produces

higher SNR images than the RMA algorithm at all but the

lowest power levels. While the reduction in the number of

antennas afforded by the CS algorithm does translate into

significant component cost and power consumption savings

for microwave imaging systems, there may be an increased

computational cost that needs to be balanced.
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