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Abstract—Speaker diarization systems aim to segment an audio
signal into homogeneous sections with only one active speaker
and answer the question “who spoke when?” We present a novel
approach to speaker diarization exploiting spatial information
through robust statistical modeling of Time Difference of Arrival
(TDOA) estimates obtained using pairs of microphones. The
TDOAs are modeled with Gaussian Mixture Models (GMM)
trained in a robust manner with the expectation-conditional max-
imization algorithm and minorization-maximization approach.
In situations of multiple microphone deployment, our method
allows for the selection of the best microphone pair as part
of the modeling and supports ad-hoc microphone placement.
Such information can be useful for subsequent speech processing
algorithms. We show that our method, which uses only spatial
information, achieves up to 36.1% relative reduction in speaker
error time compared to an open source toolkit using TDOA
features and tested on the NIST RT05 multiparty meeting
database.

I. INTRODUCTION

Speaker diarization systems have gained much importance
over the past five years in overcoming key challenges faced by
automatic meeting transcription systems. These systems aim at
segmenting the audio signal into homogeneous sections with
only one active speaker and answer the question “who spoke
when?”. Speaker diarization provides important information
for many speech processing applications and can be used to
improve the performance of Automatic Speech Recognition
(ASR) systems by allowing effective speaker acoustic model
adaptation. In this paper the term diarization refers to the
process of identifying fragments of audio which correspond
to the same speaker regardless of the speaker’s identity and
we concentrate on the meeting scenario.

Although spatial information can be estimated from single-
channel recordings for diarization [1], current state-of-the-art
algorithms can only utilize spatial information when multi-
microphone recordings are available. In the multi-microphone
case this information is usually in one of two forms: (a)
TDOA [2] which represents the time delay of the same
signal in two different microphones, or (b) based on the
steered response power method [3] that seeks the location
where a beamformer created with all microphones provides the
maximum power output. In single-microphone scenarios this
feature is infeasible to compute and therefore common speech
features like Mel-Frequency Cepstral Coefficients (MFCC)
or Perceptual Linear Prediction (PLP) are typically used to
perform diarization.

State-of-the-art diarization approaches [4] fall into two main
categories: bottom-up and top-down. The former is initialized
for the entire audio input with many clusters (typically more
than the expected number of speakers), where a cluster refers
to a collection of features corresponding to temporal segments
of the speech signal, which are then merged successively until
a stopping criteria is reached. The latter starts with only one
cluster and adds new clusters until a stop criteria is achieved.
The aim of this clustering is to group all the features of one
speaker in one cluster. Feature extraction, cluster initialization,
split/merging procedure or stop criterion are important issues
in speaker diarization systems for which various solutions
have been proposed in the literature [4][5]. Single-channel
speaker diarization algorithms generally discriminate different
speakers using speech dependent features such as MFCC or
PLP coefficients [6] commonly extracted from data captured
by close talking microphones [7]. In recent years, Log Mel-
filter banks are employed in DNN-based systems [8] or i-
vector features that are widely used in speaker recognition [9].
When multi-channel signals are available, TDOA estimates are
frequently used to perform diarization commonly determined
using the Generalized Cross Correlation with Phase Transform
(GCC-PHAT) [10]. In [2], a framework to combine these
TDOAs with MFCCs is proposed based on information theory.
In [11] the diarization is performed using the TDOAs obtained
from all possible combinations of microphones. An unsuper-
vised discriminant analysis method with a Linear Discriminant
Analysis (LDA)-like formulation, without the need of speaker
labels, is then applied to these TDOAs to transform the
input feature space into a new feature space. These new
features are then used to diarize using a standard agglomerate
clustering approach. The diarization system in [12] is based on
estimates of the phoneme, vowel and consonant classes, which
are extracted from a phoneme recognizer. Speaker change
points and speaker clusters are calculated using the Bayesian
Information Criterion (BIC) [13]. This criterion is computed
from Gaussian models fitted to MFCC features computed from
two successive speech segments, always using different models
for each segment and for each phoneme class. A real-time
meeting analyzer is presented in [14]. Several blocks of the
full system are presented (e.g. dereverberation [15], source
separation, speech recognition) along with speaker diarization
which is based on clustering the Direction of arrival (DOA).
Speaker diarization decisions are extracted by averaging the
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per frame diarization decisions over the word length. A front-
end for speaker diarization based on beamforming is presented
in [16].

The method proposed in this paper is based on the standard
clustering of the TDOAs using a Gaussian Mixture Model
(GMM). However, in order to provide robustness against noise,
a mixture to explicitly model the feature vectors that do not
form part of any cluster is added to the GMM, in addition
to the speaker mixtures, whose parameters are learned using
linear constraints on the means and variances of the mixtures.
Furthermore, the speaker index is found by maximizing the
a posteriori probability of each mixture given the TDOA
estimate and the decisions are smoothed using a Hidden
Markov Model (HMM). To the best of the authors’ knowledge,
it is the first time these linear constraints are applied for
speaker diarization purposes.

The remainder of this paper is organized as follows. In
Section II we present the proposed method and the evaluation
in Section III and conclusions in Section IV.

II. MULTI-CHANNEL DIARIZATION BASED ON ROBUST
TDOA MODELING

Figure 1 outlines the main components of the proposed
method. Each of the main blocks represented in this diagram
is described in the following sections.

A. TDOA computation

The TDOA is a common feature extracted in multi-
microphone speech acquisition and represents the difference in
the arrival times when a signal originating from a point source
is recorded by microphones at two different positions. This
feature is extracted per frame and a TDOA stream is created
by concatenating in chronological order all these TDOA
features computed for a given recording. The total number of
TDOA streams J that are possible to compute from an Nmic
microphone setup is given by, J = 0.5 ·Nmic ·(Nmic−1), and
each comprises a total of NTDOA samples. The TDOA, τ jl , for
frame l and stream j is commonly computed as the maximum
of the inverse Fourier transform of the GCC-PHAT [10],
which computes the normalized cross-correlation between two
signals in the frequency-domain. A frame size of 500 ms with
a 87.5% overlap between consecutive frames was used in this
paper (determined empirically on a development database).

B. Speaker Modeling

A GMM θ can be parametrized by the a priori vector
(λ), the mean vector (µ) and the covariance matrix (σ). The
parameters of the individual mixtures for a given stream j
are represented by θji = (λji , µ

j
i , σ

j
i ). An important aspect of

our approach is that a maximum of Nspk + 1 mixtures are
considered, i.e. θji = (θjB , θj1, · · · , θjNspk ), Nspk mixtures to
model the speakers’ TDOAs and an additional mixture θjB to
model the noisy estimates. The Maximum Likelihood Estimate
(MLE) [17] of the model parameters given the data (i.e. TDOA
stream) can be used to obtain θj as arg max

θj
log P (τ j |θj),

where τ j = (τ j1, τ j2 · · · , τ
j
NTDOA

). In common applications,
τ j can be inaccurate due to noise, overlapping speakers, non-
speech acoustic events and/or reverberation. Thus, θj needs
to be estimated robustly to these spurious TDOA estimates.
In order to robustly estimate these model parameters θj ,
linear constraints are applied on the mean and the standard
deviation in the Expectation-Maximization (EM) algorithm.
These constraints are described in the following subsections.

1) Constraints on the mean: Linear constraints on the
distribution means are determined a priori and defined such
that the mean of the noise model, µB , is independent of the
speakers’ means. Additionally, the speakers’ means are also
constrained to be separated by at least a minimum separation
to avoid them being determined indefeasibly close to each
other. Thus, the constrained means are computed as follows

µ = Mβ +C, (1)

where the former constraint, i.e. the noise model mean is
independent of the speakers’ means, is achieved with the ma-
trix M whereas the latter constraint, i.e. minimum separation
between speakers’ means, is defined using the matrix C and
the remaining unknown term β is computed by maximizing
the likelihood of the model parameters given the TDOAs using
Expectation-Conditional Maximization [18].

The expression (1) can be rewritten as,
µB
µ1

µ2

...
µNspk

 =


1 0
0 1
0 1
...
0 1

 ·
[
β1
β2

]
+


0
0
C2

...
CNspk

 , (2)

where CNspk = τmaxNspk − τmax1,

τmax1 = arg max
τ

{
p(τ) | dp(τ)

dτ
= 0

}
, (3)

and

p(τ) =
1

NTDOA

NTDOA∑
l=1

1

(2πσ2)1/2
e−
‖τ−τj

l
‖2

2σ2 . (4)

The unknown elements in C are computed following
the same procedure but replacing Nspk by the speaker
model index, where the τmaxNspk term is computed
following (3) with the additional constraint of τ 6={
τmax1, τmax2, ..., τmax(Nspk−1)

}
. The standard deviation σ

of the Gaussian kernel in (4) is computed using Silverman’s
rule of thumb [19]. In order to provide robustness to the
estimation of p(τ), negative and positive extreme values are
removed from τ j . This is carried out by removing the tail
of the estimated density such that the limits are greater than
5% of the maximum peak of the density. Density kernels are
used instead of histograms to estimate the probability density
because this approach does not depend on the bin width [20]
and the peaks are therefore more accurately estimated.
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Fig. 1. Block diagram of the proposed method. The description of each module is in the section indicated on top of the blocks.

2) Constraints on the standard deviation: Linear con-
straints on the standard deviation are also fixed a priori and
defined such that the deviation of the noise model is wider
than the deviations of the speakers’ models and additionally,
head movements of all speakers are assumed to be similar,
therefore the standard deviation of the speakers’ models is the
same. Hence, the linear constraints on the standard deviation
are given by (5),

ι = GΥ, (5)

where the elements of ι represent the inverse of the standard
deviations, G comprises the defined constraints and Υ is
estimated by maximizing the likelihood of the parameters
given the input data, solved by the Minorization-Maximization
algorithm [18].

Equation (5) can we reformulated as follows,
1/σB
1/σ1
...

1/σNspk

 =


ιB
ι1
...

ιNspk

 =


1 0
1 1
... ...
1 1

 ·[ Υ1

Υ2

]
. (6)

Additionally, variance upper and lower bounds are applied
to avoid unlikely values. These variances are set to 1.25 ms
and 0.03125 ms respectively, which are found experimentally.

C. Alignment between streams

An alignment is needed to ensure that the Nspk speaker
indexes represent the same speaker across the different J
streams. To explain this point let’s assume Nspk = 2, then the
alignment between streams verifies whether speaker model θ11
represents the TDOAs of the speaker index that is modeled
with θj1 or the speaker index that is modeled with θj2 for
j = {2, · · · , J}, where the superscript j indicates the stream
evaluated. This verification is carried out by finding the vector
d̂ such that,

arg max
d̂∈d

NTDOA∑
n=1

s(d1(n), d̂(n)), (7)

where, s(x, y) = 1 if x = y and 0 otherwise. The term

d is defined as a set of candidate vectors dj and
∼
dj

where the latter vector is the permutation of the former, as,

∼
d = dj (mod 2) + 1, and the individual decision vectors are
defined as dj = arg max

i
P (θji |τ j) where τ j represents the

TDOAs computed from stream j. Finally, the terms d1(n) and
d̂(n) are the nth elements on the vector d1, comprising deci-
sions extracted from the first stream, and d̂ respectively. The

magnitudes P (θj1|τ j) and P (θj2|τ j) are swapped if d =
∼
dj .

This approach can be applied to any Nspk > 2 by forming
d such that it comprises Nspk! vectors with all possible
decision permutations. In this case, same decisions within
each vector permute to the same values. This alignment has
a complexity of O(Nspk!), consequently the execution time
rapidly increases when more speakers are considered. In order
to reduce this complexity, a stochastic search is performed
using a Genetic Algorithm (GA)[21] when Nspk > 7. In this
case, the chromosomes encode the speaker index permutations
and the fitness function is derived from (7) and the crossover
and mutation probabilities are set empirically to 0.9 and 0.05
respectively.

D. Decoding

The aim of the decoding block is to find, for each frame l,
the speaker index i that maximizes the posterior probability
of the speaker model θji given the TDOA sample τ jl as
arg max

i
P (θji |τ

j
l ), where,

P (θji |τ
j
l ) =

P (τ jl |θ
j
i ) · P (θji )∑Nspk

e=1 P (τ jl |θ
j
e) · P (θje)

. (8)

The denominator of (8) is independent of i and hence it can
be omitted from the maximization, thus the final Maximum A
Posteriori (MAP) expression is arg max

i
P (τ jl |θ

j
i ) · P (θji ).

1) Stream Selection: We now consider multiple micro-
phones in a pair-wise setup such as may be relevant for esti-
mating TDOA streams, one stream per pair of microphones.
A priori, the pair of microphones that is closer to the speaker
is likely to be the best pair but the position of speakers
and microphones is assumed unknown in general and noise
sources can degrade the TDOAs computed in those pairs of
microphones that are close to a noise source. The stream
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selection aims at choosing the TDOA stream from the best mi-
crophone pair to diarize, i.e the model that provides the lowest
Diarization Error Rate (DER), using the commonly applied
metric in model selection [22] of the Bayesian Information
Criterion (BIC). This criterion is shown in (9) which is used
to find the optimal pair of microphones j as follows

BIC(θj , τ j) = −2 log L(θj |τ j) +Nfp · log(NTDOA), (9)

where L(θj |τ j) is the likelihood of the model θj given the
data τ j of the TDOA stream j and Nfp is the number of free
parameters to be estimated in θ. Since Nfp and NTDOA are
the same for all J streams, expression (9) is equivalent to the
Maximum Likelihood criterion.

2) Stream Combination: Alternatively, rather than selecting
only one TDOA stream to perform MAP speaker labeling, the
MAP can be performed over the average of all J streams as
follows

arg max
i

1

J

J∑
j=1

P (θji |τ
j
l ),where i = {1, · · · , Nspk} . (10)

3) HMM: A Hidden Markov Model (HMM) is imple-
mented in order to include prior models for utterance duration
and thereby potentially avoid very unlikely short utterances
from one speaker [23]. Each state of the Hidden Markov
Models (HMM) represents one speaker index and the transition
probabilities aqr and observation probabilities bq are computed
as follows for two speakers,

a12 = a21, a11 = 1− a12, a22 = 1− a21, (11)

b1(τ jl ) = P (θj1|τ
j
l ), b2(τ jl ) = P (θj2|τ

j
l ). (12)

The a21 term in (11) is computed as the ratio of TDOA frame
increment over the average speaker duration. Assuming an
approximate average speaker duration of 2.5 s [4] and the
TDOA frame increment of 62.5 ms, then a21 = 0.025. This
ratio is derived from the fact that the number of steps in the
same state is geometrically distributed [24] and its expected
value is 1/(1 − aqq) for q ∈ {1, 2, · · · , Nspk}. Therefore
1/(1−aqq) is set to be the average speaker duration in frames.
For Nspk > 2, all the states are still interconnected and the
1/(1− aqq) is still computed as the average speaker duration
in frames, however aqr = (1 − aqq)/(Nspk − 1). Finally, the
speaker label estimate at frame l can be extracted by applying
the Viterbi algorithm [25].

III. EVALUATION

A. Experimental Setup

The distant multi-microphones partition of the conference
room meetings corpora from NIST RT-05 [26] is used for eval-
uation of the proposed method, as they provide real scenarios
with highly interactive discussions between multiple speakers.
The results are obtained by setting the maximum number of
speakers to 10 for the proposed and baseline methods. Thus
both systems can be compared in the same test conditions. The
baseline algorithm for comparison in this paper is DiarTK [2].

Meeting Nspk Nmic
Stream

Selection
Stream

Combination
AMI1 4 8 54.1 85.6
AMI2 4 8 -6.0 31.3
CMU1 4 3 75.2 77.1
CMU2 4 3 77.4 38.0
ICSI1 7 6 84.6 70.8
ICSI2 9 6 50.1 49.9
NIST1 10 7 -54.3 -56.9
NIST2 4 7 0.0 31.2
VT1 5 2 8.3 8.3
VT2 5 2 25.9 25.9

Mean RRSE(%) 31.5 36.1
TABLE I

RRSE (%) RESULTS ON THE NIST RT05 DATABASE FOR THE PROPOSED
SYSTEM. THE Nspk COLUMN HIGHLIGHTS THE NUMBER OF SPEAKERS

AND Nmic THE NUMBER OF MICROPHONES IN THE MEETINGS.

This open source toolkit was given a multi-dimension feature
vector comprising TDOA streams from all microphone pairs
(TDOAs were computed with 500 ms frames and 62.5 ms
frame increment as for the proposed method). Since DiarTk
also requires a VAD input, the ground truth VAD labels
from RT05 are provided (our method was not given this
information). The evaluation was restricted to speech active
regions and thus the speaker error rates were the metric used.

B. Results

In the following we present the Relative Reduction in
Speaker Error (RRSE) as a metric for comparing the baseline
with the various modes of our proposed method. This metric
is computed as

RRSE =
SEbaseline − SEproposed

SEbaseline
· 100 (13)

where SEbaseline and SEproposed are the speaker error
achieved with the baseline and proposed method respectively.

The detailed results are presented in Table I. The stream
selection and combination modes of the proposed method
outperform the baseline algorithm on the RT05 method on
average. Overall, the stream combination approach gives the
highest RRSE (and correspondingly the lowest speaker errors).
The mean RRSE obtained without using the HMM is 29.2%
and 25.3% for stream selection and combination modes re-
spectively which indicate the suitability of these models for
diarization purposes.

The proposed method performs poorly on the NIST1 meet-
ing, which has 10 active speakers, one of whom is a remote
participant, joining the meeting through a speaker. More
importantly, only 22.2% of the evaluated segment of this
meeting contains speech (on average this is 93.78% across all
remaining 9 meetings), therefore the proposed method tries
to model the remaining 77.8% of the meeting with only one
mixture θjB which is likely to have a negative impact on the
speakers’ models due to the large amount of data without
speech. In contrast, DiarTK has a large advantage in terms of
prior knowledge used for modeling since it is provided with
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the ground truth speech active segment information, avoiding
thus this problem. Also DiarTK estimates the number of
speakers internally through an agglomerate process and thus
tries to iteratively reduce the number of speakers until the
optimal is reached whereas our proposed method builds 10
Gaussian models for each TDOA stream. By setting the correct
number of speakers in the latter method, the speaker error is
further reduced to RRSE = 51.9% with the stream combination
approach.

In general, Table I suggests that the performance of the
different methods is independent of the number of speakers.
The error of AMI2 which comprises 8 speakers is relatively
high while the error of AMI1 which comprises 8 speaker is
relatively low.

Lastly, our method is not very sensitive to errors resulting
from overestimating the number of speakers when the speaker
activity is well distributed. The performance for the proposed
method is the same for the VT meetings as there is only 1
TDOA stream available.

IV. CONCLUSIONS

In this paper we presented a novel speaker diarization
method that uses spatial features in the form of TDOAs
extracted using for example the GCC-PHAT algorithm and
modeled to be robust to noise and reverberation by applying
linear constraint on the variances and means of these GMMs
models’ parameters. The evaluation of the proposed method
was carried out on the distant multi-microphone condition
of the NIST RT05 database and showed that our method
outperforms DiarTk by 36.1% relative reduction in speaker
error, using only spatial features and by setting the number
of speakers to maximum value. Further improvements can
be gained when the number of speakers is known a pri-
ori. Although this paper focused on TDOA-based features
only, additional improvements in performance are expected
by combining additional speech features such as MFCCs with
the proposed method. In relation to the diarization output,
a confidence measure associated with each decision can be
derived from (10) by computing the averaged probability that
maximizes this expression for a given frame l. In addition to
the diarization output, our method can be used to select the
best microphone pair, which can provide valuable side infor-
mation for a number of speech signal processing algorithms.

REFERENCES

[1] Mathieu Hu, P. Peso Parada, D. Sharma, S. Doclo, T. van Waterschoot,
M. Brookes, and P. A. Naylor, “Single-channel speaker diarization based
on spatial features,” in Proc. IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics. IEEE, October 2015, pp. 1–5.

[2] D. Vijayasenan, F. Valente, and H. Bourlard, “An information theoretic
combination of MFCC and TDOA features for speaker diarization,”
IEEE Trans. Audio, Speech, Lang. Process., vol. 19, no. 2, pp. 431–
438, February 2011.

[3] D. Korchagin, “Audio spatio-temporal fingerprints for cloudless real-
time hands-free diarization on mobile devices,” in Workshop on Hands-
free Speech Communication and Microphone Arrays (HSCMA), May
2011, pp. 25–30.

[4] X. Anguera Miro, S. Bozonnet, N. Evans, C. Fredouille, G. Friedland,
and O. Vinyals, “Speaker diarization: a review of recent research,” IEEE
Trans. Audio, Speech, Lang. Process., vol. 20, no. 2, pp. 356–370, 2012.

[5] T. Stafylakis and V. Katsouros, “A review of recent advances in
speaker diarization with bayesian methods,” in Speech and Language
Technologies, I. Ipsic, Ed., chapter 11, pp. 217–240. INTECH Open
Access Publisher, Rijeka, 2011.

[6] R. Sinha, S. E. Tranter, M. J. F. Gales, and P. C. Woodland, “The
Cambridge University March 2005 speaker diarisation system,” in Proc.
European Conf. on Speech Communication and Technology, Lisbon,
Portugal, September 2005, pp. 2437–2440.

[7] S.E. Tranter and D.A. Reynolds, “An overview of automatic speaker
diarization systems,” IEEE Trans. Audio, Speech, Lang. Process., vol.
14, pp. 1557–1565, 2006.

[8] R. Milner, O. Saz, S. Deena, M. Doulaty, R. W. M. Ng, and T. Hain,
“The 2015 Sheffield system for longitudinal diarisation of broadcast
media,” in Proc. IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU), December 2015, pp. 632–638.

[9] G. Sell and D. Garcia-Romero, “Speaker diarization with PLDA i-
vector scoring and unsupervised calibration,” in IEEE Spoken Language
Technology Workshop (SLT), December 2014, pp. 413–417.

[10] Charles H Knapp and G Clifford Carter, “The generalized correlation
method for estimation of time delay,” IEEE Transactions on Acoustics,
Speech and Signal Processing, vol. 24, no. 4, pp. 320–327, 1976.

[11] N.W.D. Evans, C. Fredouille, and J.-F. Bonastre, “Speaker diarization us-
ing unsupervised discriminant analysis of inter-channel delay features,”
in Proc. IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Taipei, Taiwan, April 2009, pp. 4061–4064.

[12] T. Oku, S. Sato, A. Kobayashi, S. Homma, and T. Imai, “Low-latency
speaker diarization based on bayesian information criterion with multiple
phoneme classes,” in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Kyoto, Japan, March 2012, pp.
4189–4192.

[13] Gideon Schwarz et al., “Estimating the dimension of a model,” The
annals of statistics, vol. 6, no. 2, pp. 461–464, 1978.

[14] T. Hori, S. Araki, T. Yoshioka, M. Fujimoto, S. Watanabe, T. Oba,
A. Ogawa, K. Otsuka, D. Mikami, K. Kinoshita, T. Nakatani, A. Naka-
mura, and J. Yamato, “Low-latency real-time meeting recognition and
understanding using distant microphones and omni-directional camera,”
IEEE Trans. Audio, Speech, Lang. Process., vol. 20, no. 2, pp. 499–513,
February 2012.

[15] P. A. Naylor and N. D. Gaubitch, Eds., Speech Dereverberation,
Springer, London, 2010.

[16] X. Anguera, C. Wooters, and J. Hernando, “Acoustic beamforming for
speaker diarization of meetings,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 15, no. 7, pp. 2011–2022, September 2007.

[17] G. McLachlan and T. Krishnan, The EM algorithm and extensions, vol.
382, John Wiley & Sons, New York, 2007.

[18] Didier Chauveau and David R. Hunter, “ECM and MM algorithms
for normal mixtures with constrained parameters,” working paper or
preprint, August 2013.

[19] Bernard W Silverman, Density estimation for statistics and data
analysis, vol. 26, CRC press, 1986.

[20] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics), Springer-Verlag New York, Inc., 2006.

[21] Luca Scrucca, “GA: A package for genetic algorithms in R,” Journal
of Statistical Software, vol. 53, no. 4, pp. 1–37, 2013.

[22] Kenneth P. Burnham and David R. Anderson, Model selection and mul-
timodel inference: a practical information-theoretic approach, Springer
Science & Business Media, 2002.

[23] C.D. Mitchell and L.H. Jamieson, “Modeling duration in a hidden
markov model with the exponential family,” in Acoustics, Speech,
and Signal Processing, 1993. ICASSP-93., 1993 IEEE International
Conference on, April 1993, vol. 2, pp. 331–334.

[24] C. R. Shelton and G. Ciardo, “Tutorial on structured continuous-time
markov processes.,” Journal of Artificial Intelligence Research, vol. 51,
pp. 725–778, 2014.

[25] Andrew Viterbi, “Error bounds for convolutional codes and an asymptot-
ically optimum decoding algorithm,” IEEE transactions on Information
Theory, vol. 13, no. 2, pp. 260–269, 1967.

[26] J. G. Fiscus, N. Radde, J. S. Garofolo, A. Le, J. Ajot, and C. Laprun,
“The rich transcription 2005 spring meeting recognition evaluation,” in
Machine Learning for Multimodal Interaction, pp. 369–389. Springer,
2005.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 100


