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Abstract—In this paper, two models, the I-vector and the
Gaussian Mixture Model-Universal Background Model (GMM-
UBM), are compared for the speaker identification task. Four
feature combinations of I-vectors with seven fusion techniques
are considered: maximum, mean, weighted sum, cumulative,
interleaving and concatenated for both two and four features.
In addition, an Extreme Learning Machine (ELM) is exploited
to identify speakers, and then Speaker Identification Accuracy
(SIA) is calculated. Both systems are evaluated for 120 speakers
from the TIMIT and NIST 2008 databases for clean speech.
Furthermore, a comprehensive evaluation is made under Additive
White Gaussian Noise (AWGN) conditions and with three types
of Non Stationary Noise (NSN), both with and without handset
effects for the TIMIT database. The results show that the I-
vector approach is better than the GMM-UBM for both clean
and AWGN conditions without a handset. However, the GMM-
UBM had better accuracy for NSN types.

I. INTRODUCTION

The I-vector approach has recieved increasing interest for

different research fields such as verification, language and

emotional recognition. In [1], it was used for robust language

identification and verification recognition, while [2] and [3]

studied emotion and speech recognition; in [2], the I-vector

results were compared with those for the GMM-UBM model.

Different speaker identification challenges have been studied,

for instance, with increasing numbers of speakers, channel

variabilities, and the effects of noise and a handset. In [4],

a GMM method was investigated for text independent speaker

identification under noisy telephone channels, while elsewhere

robust speaker identification in noisy environments has been

studied, such as in [5], [6], [7], [8] and [9]. Moreover, [10]

focused on the size of the population and the degradation

produced from a noisy telephone channel and system, using

the TIMIT and NTIMIT databases. However, few studies have

involved a handset, AWGN, and NSN types in conjunction

with fusion strategies. Handset variability effects for speaker

recognition were studied in [11]. Session compensations with

the I-vector approach were considered in [12] using Linear

Discriminant Analysis (LDA), Nuisance Attribute Projection

(NAP) and Within Class Covariance Normalization (WCCN)

for text independent speaker identification. Nevertheless, this

study lacked a large number of speakers, as only 50 self

collected speakers were used. In [13], 1,000 speakers were

selected from YouTube to construct an I-vector speaker iden-

tification framework, but this non-standard database did not

include noisy conditions.

In this paper, we establish two robust text in-

dependent closed set speaker identification systems: 1) a

new fusion-based I-vector framework innovatively utilizing

four feature combinations with two feature compensation

methods, Capstrum Mean Variance Normalization (CMVN)

and Feature Warping (FW) to the Mel Frequency Cep-

stral Coefficient (MFCC) and Power Normalization Cepstral

Coefficient (PNCC) features. Then four combination of I-

vectors are produced: FWMFCC, CMVNMFCC, FWPNCC

and CMVNPNCC. It then exploited seven fusion types to

yield multidimensional I-vectors, yielding a simple, fast, and

efficient ELM classifier to identify the speakers; and 2) an

extended evaluation including differnt NSN with/without a

handset using score fusion based GMM-UBM. This exploited

our previous study which evaluated clean and AWGN in [14].

In addition, late fusion techniques were employed with the

GMM-UBM approach using maximum, mean and weighted

sum to improve performance accuracy in clean speech, and

to mitigate handset and background noise effects. However,

in the current work, we make fair comparisons between

the I-vector and modified fusion based on the traditional

GMM-UBM approaches, using 120 speakers from each of the

NIST 2008 and TIMIT databases: in total, 240 speakers with

2,400 speech utterances are employed. This work provides

a clean speech evaluation for the NIST 2008 database for

the stated approaches for a wide range of Gaussian Mixture

Components (GMC). Also, an evaluation is presented for the

TIMIT database under clean, AWGN, street traffic NSN, bus

interior NSN, and crowd talking NSN with/without G.712 type

handset at 16 kHz. This paper is structured as follows: Section

II provides the I-vector and GMM-UBM frameworks; Section

III gives the experiments and results; Section IV presents the

related work; Section V includes the conclusions and the future

work.

II. SPEAKER IDENTIFICATION SCHEMES USING

GMM-UBM AND I-VECTOR

Fig. 1 shows two speaker identification systems using a

previous study for the GMM-UBM approach [14] and the
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Fig. 1: Comparison of Two Speaker Identification Frameworks

Using GMM-UBM and I-vector Approaches Evaluated under

Different Environmental Conditions: Part A, training phase;

Part B, testing phase.

proposed I-vector approach. Both systems were trained as in

Part A in Fig. 1, and tested as in Part B. The full procedure for

GMM-UBM evaluation can be found in [14], whereas, Table

I shows that for the I-vector.

TABLE I: Summary of the algorithms for GMM-UBM and

I-vector speaker identification systems, including speech pre-

processing and background noise and handset effects

Steps I-vector speaker identification system

Initial Step All speech pre-processing and setting as well as
feature extraction and compensation methods used
are quite similar to the GMM-UBM approch in [14]

Step 1 Training the UBM using EM
Step 2 Compute the zero and first order Baum Welch Statistics
Step 3 Learning a Total Variability Space (TVS) from BWS
Step 4 Exploiting UBM, BW and TVS to extract the I-vector

[15] [16] [17]
Step 5 We had 10 I-vectors/ speaker, six for training

and the rest four I-vectors/ speaker for testing
Step 6 Fusion I-vectors using [maximum, mean, weighted sum,

cumulative] for d-dimension and
[interleaving, concatenation-2d]
for 2d-dimension and finally
[concatenation-4d] for 4d-dimension

Step 7 ELM is used for identifying speakers
Step 8 Calculate SIA using the true three tests out of four

to identify each speaker
Step 9 The proposed system produces I-vector with d, 2d and

4d I-vector dimensions d=100, 200 this yields two sets
[100, 200, 400] and [200, 400, 800] for TIMIT database
but only [100, 200, 400] are presented in this paper.
Only one set of NIST 2008 database [100, 200, 400]

A. Fusion Techniques for Combining I-vector Features

According to [15], the mathematical model for I-vector

implementation is explained using:

S = µ+ T̂ i (1)

i = (I + T̂
t
Σ

−1 N̂ (u) T̂ )−1 .(T̂ )t Σ−1F̌ (u) (2)

where: u is the given speech utterance, c = (1,..., C) which is

the UBM mixture component, C is the number of mixture

components and in this work is also denoted as Mix =

{8, 16, 32, 64, 128, 256, 512}, F is the dimensionality

of the acoustic feature vectors, i is the identity vector (I-

vector), T̂ is the total variability matrix, µ is the independent

speaker and channel supervector, and S is the speaker and

channel dependent supervector. In addition, I is the identity

matrix, Σ is a (CF × CF ) diagonal covariance matrix, N̂

is a diagonal matrix of dimension (CF × CF ), F̌ is the

(CF×1) dimension supervector and obtained by concatenating

all first-order Baum Welch Statistics (BWS), and (.)t denotes

transpose. In this section, four I-vectors are employed based on

the compensations for MFCC and PNCC features and denoted

as iM1, iM2, iP1 and iP2. The seven fusion techniques are

explained below in equations (3)-(9):

iWSF = ωk × i̇j + (1 − ωk)× ïj (3)

where: k = 1, 2, 3, 4. while, ω1 , ω2 , ω3 and ω4 = 0.7, 0.77,

0.8 and 0.9 respectively, which have been found to yield a

higher identification rate empirically.

iMaximum = max(i̇j , ïj) (4)

iMean = (i̇j + ïj)/2 (5)

iCumulative = i̇j + ïj (6)

iConcatenated(2d) =
[

i̇
t

j ï
t

r

]

(7)

iinterleaving(2d) =
[

i̇
t

jjodd
ï
t

jjeven

]

(8)

iConcatenated(4d) =
[

iM1 iM2 iP1 iP2

]

(9)

and d = dimension of I-vector, where j = 1,..., d, r = j+1,...,

2d, jj = 1,..., 2d, i̇ is the I-vector for the normalized MFCC

features with the highest SIA between (CMVNMFCC and

FWMFCC) which are denoted by iM1 and iM2, ï is the

normalized PNCC I-vector features which have the highest

SIA between (FWPNCC and CMVNPNCC), denoted by iP1

and iP2. iWSF , iMaximum and iMean are the weighted

sum, maximum and mean fusion I-vectors with d-dimension

I-vector. Also, iCumulative is the Cumulative fusion with the

d-dimension I-vector; iConcatenated(2d) and iinterleaving

are Concatenated and Interleaving fusion I-vectors with 2d-

dimension I-vector; iConcatenated(4d) is the concatenated

fusion I-vector with 4d-dimension for all I-vector features.

B. Identifying Speakers using Extreme Learning Machine

Recently, ELMs have been widely used in fields such as

computer vision, biomedical engineering, and control and

robotics, because they are simple, efficient and have impressive

performance [18], [19] [20] and [21]. ELMs have single layer

hidden node parameters which are randomly generated. The

number of input nodes is equal to the Number I-vector Dimen-

sion (NID) and we used an almost equal Number of Hidden

Neurons (NHN); however, we used different numbers when
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it was necessary to achieve higher performance accuracy. In

addition, the number of output neurons is equal to the number

of classes, and in our work, 120 classes were used to represent

120 speakers. The ELM algorithm can be summarized as

follows. We found the input weights and biases, which were

randomly generated, then estimated the hidden layer of the

output matrix; finally, we calculated the output weights.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Two databases were exploited in this study: the TIMIT

database and the 2008 NIST Speaker Recognition Evaluation

Training Set Part 2. We exploited 120 speakers from TIMIT,

with a total of 1,200 speech utterances, from which 480 were

used for testing, and 720 for training, as in [14]. For the NIST

2008 database, we exploited 120 speakers of English using a

microphone channel, and then the sampling frequency was

converted from 8 to 16 kHz to mirror the TIMIT database.

Only single speakers were selected by deleting the interview-

ers. In addition, each speech file was divided into ten equal

lengths, and six out of ten were used for training (the rest for

testing), with a fixed length of eight seconds. In this work,

our experiments can be divided into two main parts based on

NIST 2008 and TIMIT databases, in terms of the evaluations

for I-vector and GMM-UBM approaches.

A. Part A: Simulations for NIST 2008

In this part, clean speech evaluations for the I-vector and

GMM-UBM approaches were developed, as illustrated in

Table II and Table III. The evaluations show the relationship

between the SIA and the GMC, including the Number of

Hidden Neurons (NHN), which is equal to Number of I-vector

Dimensions (NID). According to both tables, it is clear that

the highest SIA for the I-vector outperforms the GMM-UBM

approach at a mixture size of 256, with 96.67% compared

with 95.83%. However, the I-vector had lower results for small

UBM mixture sizes.

B. Part B: The Simulations for TIMIT

The evaluations of the comparison of the TIMIT database

for the I-vector and GMM-UBM techniques included var-

ious background noise types with/without a handset: clean

speech, AWGN Without Handset (WOH), AWGN With Hand-

set (WH), street traffic NSN WOH and WH, bus interior NSN

WOH and WH, and finally, crowd talk NSN WOH and WH.

In addition, a G.712 type handset at 16 kHZ was used and

each simulation was achieved by employing eleven I-vectors

based on feature and fusion methods of four feature based

FWMFCC, CMVNMFCC, FWPNCC and CMVNMFCC with

100 I-vector dimension. There were seven other fusion meth-

ods; Weighted sum, Maximum, Mean, Cumulative I-vectors

fusion with d-dimension (100), Concatenated and Interleaving

fusion with 2d-I-vector dimension (200), and Concatenated

fusion with 4d-dimension (400). In Fig. 2, the simulation

illustrates GMM-UBM and I-vector comparisons in clean

speech for TIMIT, and the best SIA for each mixture size was

selected from both approaches regardless of feature or fusion

TABLE II: I-vector Speaker Identification Accuracy as a

Function of UBM at Mixture Sizes {8, 16, 32, 64, 128,

256, 512} using 1,200 speech utterances (120 Speakers) of

microphone channel from NIST 2008

Simulation 1: I-vector Approach Using the NIST 2008 Database

IV-Methods NHN 8 16 32 64 128 256 512

i̇FW 100 50 54.17 85.83 89.17 90.83 94.17 91.67

i̇CMV N 100 51.67 58.33 80 86.67 95 95 91.67

ïFW 100 34.17 50 75 85 85.83 87.5 85.83

ïCMV N 100 34.17 50.83 78.33 84.17 89.17 93.33 89.17

iWSF ω1 100 60 59.17 75.83 88.33 91.67 93.33 95

iWSF ω2 100 50.83 59.17 75.83 92.5 89.17 92.5 94.17

iWSF ω3 100 44.17 60.83 70.83 87.5 90 93.33 92.5

iWSF ω4 100 49.17 55 77.5 84.17 87.5 92.5 91.67

iMaximum 100 11.67 53.33 41.67 51.67 70.83 73.33 80

iMean 100 35 58.33 67.5 73.33 84.17 89.17 89.17

iCumulative−d 100 23.33 45 59.17 70 84.17 89.17 88.33

iConcatenated−2d 200 50.83 65 81.67 89.17 95 95.83 94.17

iInterleaving−2d 200 47.5 55 81.67 90.83 93.33 96.67 95

iConcatenated−4d 400 25 42.5 65 80.83 87.5 88.33 87.5

TABLE III: GMM-UBM Speaker Identification Accuracy as a

Function of Gaussian Mixture Components {8, 16, 32, 64, 128,

256, 512} using 1,200 speech utterances (120 Speakers ) with

a microphone channel from NIST 2008 with a microphone

channel

Simulation 2: GMM-UBM Approach for NIST 2008 Database

IV-Methods 8 16 32 64 128 256 512

i̇FW 90 89.17 92.5 95.83 93.33 92.5 94.17

i̇CMV N 83.33 87.5 88.33 90.83 90 90.83 89.17

ïFW 83.33 86.67 87.5 87.5 89.17 88.33 88.33

ïCMV N 84.17 85 89.17 89.17 89.17 88.33 88.33

iWSF ω1 89.17 90.83 94.17 95.83 95 95 95

iWSF ω2 91.67 91.67 93.33 95 94.17 95 94.17

iWSF ω3 90.83 91.67 93.33 94.17 94.17 95 94.17

iWSF ω4 90.83 90.83 92.5 94.17 94.17 95 94.17

iMaximum 90 86.67 93.33 93.33 92.5 92.5 91.67

iMean 88.33 90 90.83 91.67 92.5 94.17 92.5

method used. For small mixture sizes (8-64), the GMM-UBM

outperformed the I-vector approach, while the I-vector showed

better SIA compared with GMM-UBM at mixtures 128 and

256, but the highest SIA was with a rate 96.67% at mixture

size 256, as explained in Fig. 2; thereby, the mixture size 256

was used for the evaluation for all noise conditions.

Fig. 3 and Fig. 4 explain the comparisons for both GMM-

UBM and I-vector systems in AWGN, street NSN, bus NSN

and crowd talking NSN with/without a handset for a wide

range of SNR (0-30) dB. The continuous coloured curves

with NSN square nodes for SNR levels represent the I-vector

approach, while the dash-dot coloured curves with circle nodes

for SNR levels depict the GMM-UBM approach. Furthermore,

we used the same colour for the same noise type for both

systems. The worst performance was using the AWGN because

it has a constant noise spectrum, while bus NSN achieved
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Fig. 2: Bar Chart Plot Comparisons Between SIA against

Gaussian Mixture Components for GMM-UBM and I-vector

Approaches in Terms of Clean Speech Using the TIMIT

Database.

Fig. 3: Curve Plot Comparison GMM-UBM and I-vector

Approaches for AWGN and NSN without handset at mixture

size 256 Using the TIMIT Database.

less reduction in SIA in the presence of noise, of all other

non-stationary noise types. On the other hand, both street and

crowd talking NSN were accurate between AWGN and the bus

NSN. The relationship between the SIA for both GMM-UBM

and I-vector approaches is explained in Fig. 3 and Fig. 4 with

different noise conditions with/without the handset.

IV. RELATED WORK

This section summarises the current work on I-vector and

GMM-UBM approaches and other related work, alongside our

Fig. 4: Curve Plot Comparison GMM-UBM and I-vector

Approaches for AWGN and NSN with G.712 Type Handset

at 16 kHz at mixture size 256 Using the TIMIT Database.

previous work and other state of the art methods [14], [22],

[12], [13], [23], [24], and [5]. According to Table IV, the

handset used was G.712 type at 16 kHz, and all proposed noise

measurements in this table were at SNR 30 dB and mixture

size 256. The best results of SIA were for clean speech, and

our evaluations included various SNR levels, as explained

in Fig. 3 and Fig. 4. Better SIA based on the I-vector was

achieved compared with GMM-UBM under clean speech for

both TIMIT and NIST 2008 databases. It also outperformed all

clean speech measurements for other researchers. For TIMIT,

the proposed I-vector approach achieved higher SIA under

AWGN compared with the previous study on the GMM-

UBM system, are compared with other work; in contrast,

our previous work with GMM-UBM had better SIA than the

proposed I-vector for AWGN WH, in line with other work.

In addition, for non stationary background noise WH, the

performance accuracy of GMM-UBM was better than the I-

vector at SNR 30dB, but this reversed for some SNR levels.

Finally, in [5], it seems the SIA for street noise was higher than

in the proposed work, but this was achieved using a different

noise database with 630 speakers.

V. CONCLUSIONS

This paper considered robust text independent speaker

identification using I-vector approach for various background

noises WH effects. The proposed work is compared fairly

with the GMM-UBM approach and evaluated on the TIMIT

and NIST 2008 databases for clean speech and also for

TIMIT databases under nine different conditions, using both

databases, eleven I-vectors together with feature and fusion-

based methods. The system for both databases outperformed

GMM-UBM techniques for clean speech, and also outper-

formed in TIMIT database under AWGN WOH, then it seems

better for some SNR levels with street and crowd talking.
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TABLE IV: Recent works Related to I-vector and GMM-UBM

Techniques Speaker Identification

Approaches The best feature

/ fusion based
Condition The best SIA

(1) Proposed work using NIST 2008 with 120 Speakers (1,200 utterances)
Proposed fusion based I-vector Interleaving-2d Clean 96.67%
Proposed fusion based GMM-UBM Weighted sum Clean 95.83%
(2) Proposed work. using TIMIT database with 120 Speakers (1,200 utterances)

Proposed fusion based 

I-vector

Weighted sum Clean 96.67%
Concatenated-2d

Interleaving-2d
AWGN 80.83% (30dB)

FWMFCC-feature AWGN-WH 72.5% (30dB)
Weighted sum Street traffic NSN 90% (30dB)
Weighted sum Street traffic NSN-WH 82% (30dB)
Interleaving-2d Bus interior NSN 93.33%(30dB)
Weighted sum Bus interior NSN-WH 89.17%(30dB)

Concatenated-2d Crowd talking NSN 90.83% (30dB)
FWMFCC-feature Crowd talking NSNWH 85% (30dB)

Proposed fusion based

GMM-UBM

Weighted sum Street traffic NSN 90.83% (30dB)
Mean fusion Street traffic NSN-WH 90% (30dB)
Mean fusion Bus interior NSN 94.17% (30dB)

Weighted sum Bus interior NSN -WH 91.67% (30dB)
Weighted sum Crowd talking NSN 91.67% (30dB)
Weighted sum Crowd talking NSNWH 90% (30dB)

Fusion based GMM-UBM
Weighted sum Clean 95%

Maximum fusion AWGN 79.17% (30dB)
FWMFCC-feature AWGN-WH 75.83% (30dB)

(4) The State of The Art in [22] [2014] using NIST 2008 with 400 speakers

I-vector Approach Without fusion Clean 49.5%
White noise at 15 dB 39.3% (15dB)

GMM-UBM Approach Without fusion Clean 39.7%
White noise at 15 dB 24.6% (15dB)

GMM-UBM-ZT norm Without fusion Clean 42.5%
White noise at 15 dB 29.7% (15dB)

(5) In [12] [2014] using Corpus designed and MIT mobile phone with 50 speakers
I-vector + LDA + WCCN Without fusion Clean 94.14% at (CDS)

I-vector (400 dim) + LDA + WCCN 92.36% at (SVM)
(6) The state of the art in [13] [2014] using YouTube with 1,000 speakers

I-vector retrieval Without fusion Clean 92% testing (10s)

96.1% testing (20s) 

(7) The state of the art in [23] [2012] using TIMIT with 120 speakers
Fusion Based GMM Weighted sum Clean 93.88%

(8) The state of the art in [24] [2011] using TIMIT database with 64 speakers

GMM-UBM without fusion Without fusion
Clean 94.5%

AWGN -WH 74.2% (30dB)
(9) The state of the art in [5] [2007] using TIMIT database with 630 speakers

New model with GMM at Mix
128

Without fusion Clean 96.51%
Street NSN (20dB) 92.86%

(3) Our previous study Using TIMIT with 120 Speakers [14][2016]

In contrast, for bus interior NSN, the GMM-UBM achieved

less reduction in SIA compared with the I-vector approach.

Additionally, fusion techniques may mitigate the reduction

caused by different noise environments and the handset effect,

whereas fusion weights generally seem to be the best of all

feature and fusion methods used. In future work, we will also

consider a new databases such as The Speakers in the Wild

(SITW) Speaker Recognition Challenge database. We will also

extend our evaluation of the NIST 2008 to include stationary

and various NSN types with handset.
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