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Abstract. The recent increase in smart meters installations in house-
holds and small bussiness by electric companies has led to interest in
monitoring load techniques in order to provide better quality service
and get useful information about appliance usage and user consumption
behavior. This works summarizes the current state of the art in Non In-
trusive Load Monitoring from its beginning, describes the main process
followed in the literature to perform this technique and shows current
methods and techniques followed nowadays. The possible application of
this techniques in the context of ambient intelligence, energy efficiency,
occupancy detection are described. This work also points the current
challenges in the field and the future lines of research in this broad topic.
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1 Introduction

The operating condition of appliances used in such different scopes such as home,
industry and commerce cannot be truly determined without the proper moni-
toring system. The main purpose of load monitoring techniques is to ease the
conservation of energy consumption through different approaches like appro-
priate timing of appliance usage, optimization in their usages and getting rid of
unwanted activities producing unnecessary energy consumption. These purposes
can be achieved showing to the inhabitants of a house the consumption of each
appliance in the sum of the total billing for detect malfunction or excesses in
some of them [5]. In addition, it could be possible notify to users of possible
savings in their billing deferring their main loads when the price of electricity
is low. Contrary to this, Kelly et al. [19] argue in a study that it is not proven
yet that these additional feedback lead to savings. Recently there is an evident
increase in micro grids and continuous growth of renewable energy facility in-
stallation, so to add quality to these saving efforts, more energy measures need
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to be collected in order to monitor, automate and manage the power system.

In general terms, the load monitoring is the process of identifying and ac-
quiring the load measurement in a power system [1]. This load monitoring will
determine the consumption and appliances’ status, in order to comprehend the
behavior of individual loads in the whole system.

Depending on the approach used to monitor the appliance monitoring it can
be Intrusive Load Monitoring (ILM) or Non-Intrusive Load Monitoring (NILM):

– Intrusive Load Monitoring: This term covers all those approaches that
propose to deploy a measurement device for each appliance or load under in-
terest. The need of several measurement devices in the ILM ecosystem makes
it expensive and hard to maintain, install and expand. The term intrusive
means that the metering device is located in the habitation, close to the
appliance being monitored. As mentioned in [37] there are subclassifications
depending on the level of intrusion:

1. ILM 1 relies on sub-meters that typically measure the consumption, of
a zone of the house, placing it at the circuit breaker level.

2. ILM 2 uses metering devices placed at plug level, so one device can
monitor one or more appliances at the same time.

3. ILM 3 uses metering devices placed at appliance level.

The above explained reasons, led the introduction of a non-intrusive variant
of the method with much lower cost.

– Non-Intrusive Load Monitoring: These approaches consist of processes
in which given data coming from the whole house consumption, typically by
installing a metering device at panel level which infers what appliances are
being used and how much they consume at a given time. The preference of
using NILM techniques over ILM ones are mainly due to its cheaper and
easier installation, since it only uses one metering device for each energy
entrance to the house instead of at least one metering device per room.

Another synonym for NILM is the term energy disaggregation, which is a
computational technique for estimating the power demand of individual appli-
ances from a single meter which measures the overall demand across several
appliances. The main motivations to study NILM in the review proposed in this
work are: (1) detailed identification of appliance usage, (2) appliance manage-
ment, (3) energy theft detection, (4) occupancy detection and (5) lower price
level and intrusion compared to intrusive load monitoring. In this work we pro-
pose a review over the latest techniques used for NILM and energy disaggre-
gation itself, following the next structure: First of all section 2 summarize the
related work about NILM from the beginning of the term to nowadays. Section 3
provides an an examination of the process that is followed generally in the liter-
ature to achieve load disaggregation in NILM. Section 4 offer a recap of the most
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common machine learning algorithms used to achieve NILM. Finally section 5
present applications, challenges and future lines of research in the topic.

2 Related work

Hart first introduced the Non-intrusive Appliance Load Monitor (NALM) as a
paradigm for a software system capable of analyzing single-point electrical data
to obtain information about the energy used by individual appliances [12]. Since
then, a number of studies have extended its simple linear model to use other
directly sampled quantities to augment and increase the resolving power of the
∆P -∆Q space [38] [43]. This approaches couldn’t distinguish appliances that
draw similar power and similar operational principles, such as an iron and a hair
dryer.

The research of disaggregation techniques based on Fourier harmonics aim
to be able to separate more fine grained appliances such as low-load complex
devices present in homes, offices and industry [26]. Steady-state monitoring tech-
niques are successfully applied in low event rate generation environments, such
as homes and small business [25]. On the other hand, large industrial facilities
and companies need more complex approaches due to the high amount of event
generation, load balancing and power factor correction [40]. Higher harmonics
in the aggregated signal adds another dimension to the classification problem,
making possible to distinguish loads with similar ∆P -∆Q space representation.

The advanced load monitor proposed by Laughtman et al. [25] is capable
of recognize individual appliance load based on their transient shapes. This be-
havior is closely related to the task which the appliance performs. For example,
a computer and a light bulb produce turn-on transients different enough that
makes possible to perform near real-time classification. For continuously variable
loads, Laughtman et al. [25] proposes the analysis of the spectral envelopes. This
allows the NILM system to disaggregate loads like VSDs, which draws distorted
and pulsatile waveforms leaving characteristic traces not only in real power but
in the fifth and seventh harmonic.

In the work proposed by Patel et al. [34] a combination of hardware and soft-
ware performs the task of household-level current sampling at 1MHz, obtaining
features from the electric noise due to appliance usage (above all, turning on and
off). Then, a SVM model is supervisedly trained to obtain up to 90% accuracy.

The analysis through this set of techniques require high sampling rate (in
the order of kHz sampling rate or more) which makes it hard to apply in real-
world environments due to metering limitations. Another drawback is the need
of calibrate the prediction models for those houses different enough from the
training ones.

The need of new techniques capable of perform appropriately in a wide va-
riety of household and the usage of low-cost devices to retrieve the energy con-
sumption make the methods explained above not valid enough to be introduced
into services for end-users. Is for these reasons that lately, new techniques have
been proposed with low rate data retrieval from 1Hz to lower sample rate as 15
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min per sample (Makonin supports this approach in its thesis [28]) which tries
to apply the latest machine learning and deep learning knowledge to make the
best high energy disaggregation process, as explained in the later sections. In
the next section we will describe the general pipeline followed in the literature
in other to perform Non Intrusive Load Monitoring.

3 NILM process

Fig. 1. General Pipeline of NILM in literature

NILM is presented as a time series classification problem where we have to
detect which appliances are active at a time t and how much each one contributes
to the total percentage of consumption. Figure 1 shows a general flowchart that
describes the NILM process [49]. Each part of this process is described below.

3.1 Data acquisition

As highlited previously, most of NILM approaches pretend to use the data pro-
vided by the main smart meter of the household exclusively, but in practice,
training with data from single point smart energy meters —in varying degrees—
is required in most of the approaches. This will be explained in the following
sections.

Regarding to the kind of data collected [28] [31], the smart meters measure
the alternating current (AC), and therefore the most basics measurements are:
voltage (∆V , measured in Volts: V ), current (I, measured in Amperes: A), and
apparent power (S, measured in Volt-Amperes: V A) which is the product of
current by voltage. There are other measurements derived from the previous
ones: real power (P, measured in watts: W ) is the transference of energy in the
net, regardless of the direction. It is also called power or average power. Note that
this is different that the gross transference called apparent power (this is due to
power losses in reactive components of a circuit). Another interesting measure is
the ratio between the previous ones: power factor (PF), (P/S) or cos(Θ) where Θ
is the angle between voltage and current, as well as reactive power (Q, measured
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in volt-ampere-reactive or V AR), which is an usual measure related to the rate
at which power is stored and released back by components such as capacitors
and inductors. Additionally, there are other advanced measures such as electric
characteristic, harmonic distortion [27] [46], electromagnetic interference (EMI)
and transients. Finally energy consumption is the amount of power consumed
over the time (kWh kilowatt-hour). This measure appears in the bill and it is
one —actually, the first one— of the main objectives of NILM: disaggregate this
total amount to each appliance.

Next to this, it is necessary to emphasize the sampling rate of the data
collected, as it determines the type of information that could be extracted from
the electrical signals [49]. There are two main groups of data collected based on
this criteria [4]:

– High sampling rate: The data is collected at a sampling frequency of 1Hz
or more. This kind of data allows to extract some features in the consumption
which are only present at these sampling rates. In some cases these very high
sampling rates only can be achieved with special hardware.

– Low sampling rate: This group includes frequencies of sampling lower
than 1Hz down minutes or even hours. This kind of sampling rate is the
most common in the smart meters which can be bought nowadays.

Collected data is stored in remote databases for further feature extraction
and processing. In the literature there are several databases of reference in this
domain in order to test different algorithms. Some of them are REDD [23], UK-
DALE [20], AMPds [29] and others which can be found in this WIKI [47]

3.2 Event detection and feature extraction

After collecting data, the next step is extracting more information about the
electrical temporal series in order to obtain features that allow to detect events
such as appliance state transitions. Depending on where these features can be
extracted, they can be classified as follows [49]:

– Steady state features: This features are derived from the steady-sate op-
eration of an appliance. Variations in Real Power (P) and Reactive Power
(Q) are commonly used [12] in the steady state to detect the change state
events operation of appliances. The number and kind of features that could
be extracted will depend on the data sample rating. Features only related
to real power can be extracted at a low rate sampling and used to detect
appliances with very different power draw characteristics. Features such as
current harmonics work better than previous, but they require a high rate
sampling to be obtained.

– Transient state features: This features are derived from the transient
state operation of an appliance. These features are less overlapping between
appliances compared to steady state features. However, the major drawback
is the high rate sampling required to obtain these features [8]. There are
several features such as current spikes, transient response time, repeatable
transient power profiles, spectral envelopes, etc.
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– Non traditional features: These features refer to other new characteristics
which are result of the other two kinds of characteristics or other such as
time of the day, on/off distribution, use frequency of an appliance and the
correlation of usage of multiple appliances [21][48].

3.3 Inference and learning

Once the features are extracted, it will be necessary to apply methods which
determine the appliances that are running at a given time. This techniques can be
classified as supervised techniques and semi-supervised or unsupervised methods.
The supervised disaggregation methods require individual appliance data to be
trained so they can classify the appliances which are working at each moment.
Semi-supervised methods need to train a little amount of data at the beginning
of the process to perform the classification, and the unsupervised methods can
learn from the data collected without previous training data.

Supervised methods This kind of methods can be splitted into:

– Optimization approaches: They deal with NILM problem as an optimiza-
tion problem. The extracted features are compared to discover load features
stored in a database and to find the closest possible match. These algorithms
find the most accurate combination of appliances included in database, which
could have caused the output measure. Integer programming [2] and genetic
algorithms [3] have been used in this kind of approaches [6].

– Pattern Recognition approaches: These approaches are commonly used
by researchers in this topic. They can include simple based clustering ap-
proach like Hart et al. [12], Bayesian approaches [42] —which detect the most
likely states of the potential appliances states—, SVMs classifying harmonic
features [17], and other approaches like Hidden Markov Models and Arti-
ficial Neural Networks [41] —that have demonstrated a great performance
due to their ability to introduce temporal and state change information—.
Some of this approaches will be explained later. Since the performance of
the previous algorithms is dependent of the features extracted, a reference
dataset is required in order to evaluate their performance correctly [23].

Semi-supervised and unsupervised methods These methods are highly
explored nowadays because they require minimal or no previous information. A
lot of companies are interested in these approaches because of their low setup
cost, their non intrusiveness and short training phase for load identification algo-
rithms. There are several studies in the literature which use this kind of method
to detect loads: In this work [11], authors use steady state features P and Q to
cluster the appliances and a matching pursuit to source reconstruction. Other
studies —like [39]— focuses on the use a Motif mining approach. This approach
uses on/off events and try to identify appliance episode. This method only works
for appliances with static episodes of events. In the work [21], the authors have
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built a probabilistic model using a variation of HMM called Factorial Markov
Models (FHMM) and features related to time. Additionally, power consumption
of each appliance have been used to model individual models to each appliance.
Recently, authors like [15] have developed a method to achieve a fully unsu-
pervised disaggregation. The accuracy obtained from these methods is generally
lower than the accuracy obtained with supervised methods in disaggregation,
but their easy deployment is highly appealing to the current companies in the
sector.

3.4 Appliance classification and load disaggregation

This is the last phase in the NILM process: after completing the load identifi-
cation, dividing the total consumption among the identified loads is required.
Detailed information about the amount of consumption provided by each appli-
ance to the total household consumption will be shown to the user. In addition,
information related to the energy price can be provided to inform user about
how much every appliance consumption costs.

4 Disaggregation Techniques

This section collects the very latest techniques applied into the energy disaggre-
gation field.

4.1 Autoencoders

NILM and energy disaggregation can be treated as a denoising problem. This
kind of tasks include removal of grin from an old photo, removal of reverb from
an audio or in-filling a part of an image. Energy disaggregation can be treated in
the same way, retrieving the clean signal, without the noise produced by other
appliances, of the target appliance.

An autoencoder (also named AE) is a neural network which task is recon-
struct (rebuild) the input. The key part is that the autoencoder encodes the
input to a reduced vector representation and then decodes it for the output.
The easiest way to force the network to compress the data representation is
having a code layer with a smaller dimension than the input. The behavior of
a linear AE with just one hidden layer is equivalent to PCA, thus AEs can be
deep and non-linear.

Denoising Autoencoders (dAE) were firstly introduced by Vincent et al. [44]
tries to recover a clean signal from a noisy one. These are typically trained by
artificially corrupting a signal and using it as a the input for the net while the
original signal is used as the output of the network.

In NILM, dAEs are used with the aggregated power demand signal as the
‘noisy’ one to reconstruct and the output is the clean signal of the individual
consumption of the target appliance. In the study proposed by Kelly [18] in the
use of denoising autoencoders barely reaches an average F1 score of 55%.
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4.2 HMM

Hidden Markov Models (HMM) is an approach selected by a broad number of
researchers to face NILM [28, 21]. This is because they can model time series
and represent the unobservable states of that time series. In a HMM the state of
the model is hidden (the state is not directly visible to the observer), however,
the output is visible and it depends on that hidden state. In NILM the hidden
state is the state of all the appliances (each possible combination of theirs pos-
sible load states) and the output observed is the aggregate consumption of the
household. Each hidden state has a probability distribution related to the all
possible outputs and thus, the sequence of outputs provides information about
the sequence of the hidden states. Markov property affirm that the conditional
probability distribution of hidden states depends only on the value of the imme-
diately previous hidden state and all others previous states have no influence.
HMM starts on the premise of that Markov property is holden for a given HMM
model. A common HMM can be defined as [28]:

λ = {S,O, P0, A,B}, (1)

where S is the set of possible states, O observations, P0 initial probabilities, A
the transition matrix and B the emission matrix. The total number of states and
observations are K = |S| and N = |O| respectively. A defines the probability
for state transition from a state to the next state with K × K matrix where∑

iA[i, j] = 1.0 and B defines the probability for detect a particular observation
at the next state with K ×N matrix where

∑
j B[j, n] = 1.0. Formally:

A[i, j] = p(St = j|St−1 = i) (2)

B[j, n] = p(Ot = n|St = j) (3)

Algorithms like Viterbi algorithm [45] among others are used to decode the
most probable states of the appliances in each moment. This kind of algorithms
have a main drawback related to the high complexity in space and time that
they present. Given M loads with K internal states (all the loads with the same
states for simplicity) the total number of hidden states is kM so it is a high
number of states for a common household monitoring only 10 loads.

There are several approaches using HMM and its variants for disaggregation
such us Kolter [22], Parsons [33], Johnson [16] and Makonin [30] which deal with
the previous problem and they propose different ways to solve it.

4.3 Deep Learning

Deep learning is a term used to refer to a set of machine learning techniques.
In the artificial neural networks field it describes networks with many layers.
The objective of using this kind of architectures is learning about a hierarchy of
features. Studies points that layerwise stacking of feature extraction often yielded
better representations (e.g. classification error, quality of samples generated or
invariance properties) [24, 7].
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Each layer processes some kind of input, processes and learns from it, to
give a better representation of the data to the next layer’s input, exponentially
increasing the number of possible state representations [32]. This computational
concept is borrowed from the human brain’s ability to observe, analyze, learn and
make decisions, especially for extremely complex problems. A major advantage
of these representations is that they can be invariant to local changes occurred
in the input data. Learning from invariant features is a major goal in pattern
recognition tasks like those needed in the NILM field.

This kind of deep architectures have succeeded in recent years due to the
recent overcome of many problems that prevented the advance of the techniques.
Some of major ones are the creation of optimization techniques and architectures
and the huge amount of data available in many fields, which are mandatory
to successfully train deep networks. Also, the exponential growth of processing
power in GPUs with its lowering price tag per processing power make this devices
more affordable and usable to train this kind of architectures in shorter periods
of time.

The disaggregation process is made through the use of a sliding time window
along the input sequence. As such, the first input sequence for the network will
be zeros. Then the input window is shifted K samples (where K >= 0). If K is
less than the length of the network’s input layer size, then it will see overlapping
input sequences. This behavior allows the net to process same values in several
attempts and detect in a better way appliance activation. Onwards, we explain
the most recent deep learning architectures applied to energy disaggregation in
three major categories named by the neuron and architecture used in each case.

Convolutional Neural Network CNN There are biologically-inspired vari-
ants of MLPs. From Hubel and Wiesel’s [14] work on cat’s visual cortex we know
it has a complex arrangement of cells. These are sensitive to subregions of the
visual field, called receptive field. The subregions are tiled to cover all the visual
field. These cells act as local filters over the input space and are well-suited to
exploit the string spatially local correlation present in images.

A feature map is obtained by repeatedly applying a function across subregions
of the entire image and by the convolution of the input image with a linear filter,
adding a bias term and then applying a nonlinear function.

Convolutional neural nets build a small number of filters, each with a small
receptive field, and these filters are duplicated (with shared weights) across the
entire input.

There are several kind of convolution neurons depending on the dimension.
For the NILM use case, Convolution 1-Dimensional Neurons are applied due to
the unidimensional nature of the input time-series dependant data.

Similarly to computer vision tasks, in time series problems we often want to
extract a small number of low-level features with a small receptive fields across
the entire input.

As proposed in the work of [35] the typical architecture using convolutional
layers with increasingly number of filters. Max Pooling layers are also applied in
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order to give some translation invariance while reducing the number of parame-
ters of the network. The accuracy result is around 84% for all the houses where
individual training and testing were applied. This kind of neural network shows
better average accuracy results against LSTM 4.3 architectures.

Long Short Term Memory LSTM This type of neuron was first published
by Hochreiter and Schmidhuber in 1997 [13] and have been applied in a broad
range of problems with a great success such as handwriting recognition, speech
recognition and time-series related classification.

The kind of architecture in which this neurons are applied was designed
to solve the vanishing gradient problem, common in typical recurrent neural
network architectures. It makes use of gates to have a better control against
gradient flow. However, in presence of backpropagation the error loops in the
memory and causes an error known as “carousel error”. This issue was fixed
with the introduction of peephole connectors, increasing the precision of the
network [10]. Also, Gers et al. [9] introduced the called “forget gates” that made
possible to the LSTM to learn local self-resets of their memory content that isn’t
relevant, reducing possible errors due to memory remembrance.

In the NILM field, LSTM based architectures have been successfully applied
in energy disaggregation like the work presented by [18] and [35] reaching up
to 80% precision score in different houses and appliances as their work show, a
little worse performant than convolutional networks.

5 Applications and challenges

Finally we will show some of the most interesting application of NILM and their
related challenges:

– Detailed bill information: The most widespread application, which tries
to provide more information to the user in order to obtain energy savings
and reductions in its bill. The main objective is achieving the best accuracy.
Researchers are searching a way to compare the disaggregation present in
the market.

– Demand response application: Other interesting use case is the detec-
tion of potential consumers of demand response programs by utility elec-
tricity companies. The detection of deferrable loads or inactivity periods in
the energy consumption of their consumers can target them for a possible
demand response program.

– Ambient intelligence: The load monitoring enables other sensing ap-
proaches without the need of include new sensors in the household.

– Occupancy detection: Linked with the previous point, it would be possible
infer the presence or absence in household by the power consumption. This
is an interesting point for companies to offer extra services without deploy
any sensor platform, in the same way this may involve an intrusion into the
privacy of thousands of users of the electric network.
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– New companies services: Thanks to this, load monitoring companies are
offering new services like show the current billing amount from the beginning
of the billing period to the current time. Also other services like [36] offer
real time information about appliances switched on and provide reminders,
for example, to switch off certain appliances before leave home.

– Illegal load detections: Other useful application of NILM its the detection
of anomalous loads in household which can be used to report possible energy
thefts in public and private buildings.

NILM is and will be a intense subject of study in the following years as the
use of smart grids, demand response programs and other energy-consumption
and metering approaches are more and more spread into end user applications.
The arrival of new techniques as explained in this work accelerate this spreading
process.
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