Conference paper Open Access

Content Recommendation through Semantic Annotation of User Reviews and Linked Data

Vagliano, Iacopo; Monti, Diego; Scherp, Ansgar; Morisio, Maurizio


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="942" ind1=" " ind2=" ">
    <subfield code="a">2018-12-06</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">DBpedia, Linked Data, Recommender Systems, Semantic Annotation, Semantic Web, User Reviews, Web of Data, Wikidata</subfield>
  </datafield>
  <controlfield tag="005">20200120172654.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">Extended technical report available at https://arxiv.org/abs/1709.09973</subfield>
  </datafield>
  <controlfield tag="001">1157871</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">4-6 December 2017</subfield>
    <subfield code="g">K-CAP 2017</subfield>
    <subfield code="a">K-CAP 2017 Proceedings of the Knowledge Capture Conference</subfield>
    <subfield code="c">Austin, TX, USA</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Politecnico di Torino</subfield>
    <subfield code="a">Monti, Diego</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">ZBW - Leibniz Information Centre for Economics</subfield>
    <subfield code="a">Scherp, Ansgar</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Politecnico di Torino</subfield>
    <subfield code="a">Morisio, Maurizio</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">532258</subfield>
    <subfield code="z">md5:5ca081572c3add5d657ed8a17d4cd740</subfield>
    <subfield code="u">https://zenodo.org/record/1157871/files/main_acm.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-01-23</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-moving-h2020</subfield>
    <subfield code="o">oai:zenodo.org:1157871</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">ZBW - Leibniz Information Centre for Economics</subfield>
    <subfield code="0">(orcid)0000-0002-3066-9464</subfield>
    <subfield code="a">Vagliano, Iacopo</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Content Recommendation through Semantic Annotation of User Reviews and Linked Data</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-moving-h2020</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">693092</subfield>
    <subfield code="a">Training towards a society of data-savvy information professionals to enable open leadership innovation</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by-nc/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution Non Commercial 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Nowadays, most recommender systems exploit user-provided ratings to infer their preferences. However, the growing popularity of social and e-commerce websites has encouraged users to also share comments and opinions through textual reviews. In this paper, we introduce a new recommendation approach which exploits the semantic annotation of user reviews to extract useful and non-trivial information about the items to recommend. It also relies on the knowledge freely available in the Web of Data, notably in DBpedia and Wikidata, to discover other resources connected with the annotated entities. We evaluated our approach in three domains, using both DBpedia and Wikidata. The results showed that our solution provides a better ranking than another recommendation method based on the Web of Data, while it improves in novelty with respect to traditional techniques based on ratings.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1145/3148011.3148035</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
109
123
views
downloads
Views 109
Downloads 123
Data volume 65.5 MB
Unique views 93
Unique downloads 122

Share

Cite as