Conference paper Open Access

Content Recommendation through Semantic Annotation of User Reviews and Linked Data

Vagliano, Iacopo; Monti, Diego; Scherp, Ansgar; Morisio, Maurizio


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/1157871</identifier>
  <creators>
    <creator>
      <creatorName>Vagliano, Iacopo</creatorName>
      <givenName>Iacopo</givenName>
      <familyName>Vagliano</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-3066-9464</nameIdentifier>
      <affiliation>ZBW - Leibniz Information Centre for Economics</affiliation>
    </creator>
    <creator>
      <creatorName>Monti, Diego</creatorName>
      <givenName>Diego</givenName>
      <familyName>Monti</familyName>
      <affiliation>Politecnico di Torino</affiliation>
    </creator>
    <creator>
      <creatorName>Scherp, Ansgar</creatorName>
      <givenName>Ansgar</givenName>
      <familyName>Scherp</familyName>
      <affiliation>ZBW - Leibniz Information Centre for Economics</affiliation>
    </creator>
    <creator>
      <creatorName>Morisio, Maurizio</creatorName>
      <givenName>Maurizio</givenName>
      <familyName>Morisio</familyName>
      <affiliation>Politecnico di Torino</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Content Recommendation through Semantic Annotation of User Reviews and Linked Data</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>DBpedia, Linked Data, Recommender Systems, Semantic Annotation, Semantic Web, User Reviews, Web of Data, Wikidata</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-01-23</date>
  </dates>
  <resourceType resourceTypeGeneral="ConferencePaper"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1157871</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1145/3148011.3148035</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/moving-h2020</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by-nc/4.0/legalcode">Creative Commons Attribution Non Commercial 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Nowadays, most recommender systems exploit user-provided ratings to infer their preferences. However, the growing popularity of social and e-commerce websites has encouraged users to also share comments and opinions through textual reviews. In this paper, we introduce a new recommendation approach which exploits the semantic annotation of user reviews to extract useful and non-trivial information about the items to recommend. It also relies on the knowledge freely available in the Web of Data, notably in DBpedia and Wikidata, to discover other resources connected with the annotated entities. We evaluated our approach in three domains, using both DBpedia and Wikidata. The results showed that our solution provides a better ranking than another recommendation method based on the Web of Data, while it improves in novelty with respect to traditional techniques based on ratings.&lt;/p&gt;</description>
    <description descriptionType="Other">Extended technical report available at https://arxiv.org/abs/1709.09973</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/693092/">693092</awardNumber>
      <awardTitle>Training towards a society of data-savvy information professionals to enable open leadership innovation</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
109
123
views
downloads
Views 109
Downloads 123
Data volume 65.5 MB
Unique views 93
Unique downloads 122

Share

Cite as